

FAKULTÄT FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

FORSCHUNGSGRUPPE SOFTWAREKONSTRUKTION

DIPLOMARBEIT

Entwurf eines generischen Prozessleitstandes für Change Request Systeme

Development of a Generic Process Dashboard for Change Request Systems

Christian Charles

12. Juni 2013

GUTACHTER
Prof. Dr. rer. nat. Horst Lichter
Prof. Dr. rer. nat. Bernhard Rumpe

Betreuer Dipl.-Inform. Matthias Vianden

	egende Arbeit selbständig verfasst und keine nd Hilfsmittel benutzt sowie Zitate kenntlich
Aachen, 12. Juni 2013	(Christian Charles)

Einige Worte des Dankes

An dieser Stelle möchte ich mich recht herzlich bei allen bedanken, die mir auf vielfältige Weise Gelegenheit gaben, diese Diplomarbeit zu erstellen:

Herr Prof. Dr. rer. nat. Horst Lichter überließ mir das Thema und unterstützte mich während der Entwicklung der Arbeit.

Herrn Prof. Dr. rer. nat. Bernhard Rumpe danke ich für die Übernahme des Zweitgutachtens.

Bei Herrn Dipl.-Inform. Matthias Vianden möchte ich mich für die Betreuung dieser Diplomarbeit bedanken. Seine stets konstruktiven und zielführenden Hinweise waren bei der Bearbeitung des Themas gleichermaßen hilfreich wie inspirierend und bestimmten wesentlich den Fortgang dieser Arbeit.

Zum Schluss danke ich meinen Eltern, die mich während des Studiums stets unterstützt haben.

Christian Charles

Kurzdarstellung

Deutsch

Die Analyse und Optimierung von Softwareentwicklungs-Prozessen ist eine komplexe und Ressourcen-intensive Herausforderung für Software-entwickelnde IT-Organisationen. Softwareentwicklungs-Prozesse werden durch die Verwendung von Standard-Software-Werkzeugen wie Change-Request-Systemen unterstützt. In dieser Diplomarbeit wird der Frage nachgegangen, inwiefern Daten, die durch die Nutzung solcher Werkzeuge entstehen, zur Analyse der Softwareentwicklungs-Prozesse genutzt werden können, die diese Werkzeuge einsetzen.

English

Analyzing and optimizing software development processes is a complex and resource demanding task faced by organizations which are concerned with software development. Software development processes are supported by the application of standard software tools such as change request systems. This diploma thesis considers the question, to what extent data, that is generated due to the usage of such tools, can be exploited for the purpose of analyzing the software development processes, which apply these tools.

Inhaltsverzeichnis

1	Einl	eitung	1
	1.1	Ziel der Arbeit	1
2	Gru	ndlagen	3
	2.1	Qualität	3
	2.2	Metriken	5
	2.3	Change-Request-Systeme	12
	2.4	Sankey Diagramme	12
	2.5	Java EE	15
	2.6	Weitere Technologien	16
3	Ver	wandte Arbeiten	19
	3.1	Extraktion und Analyse vorhandener Daten aus Software-Werkzeugen	19
	3.2	Metrik-Aufbereitung und -Visualisierung	20
4	Kon	zept	21
	4.1	Vorgehensweise	21
	4.2	Stakeholder	22
	4.3	Leitstand	23
	4.4	Identifikation der Datenquellen	30
	4.5	Erster Prototyp	32
	4.6	Vom Workflow zum Sankey-Diagramm	37
	4.7	Zweiter Prototyp	38
	4.8	Konsolidierte Anforderungen	46
5	RIV	ER - Werkzeugunterstützung	49
	5.1	Architektur	49
	5.2	Grafische Benutzeroberfläche (GUI)	54
	5.3	Daten-Modell und -Persistierung	61
	5.4	Metrik Kalkulation	64
	5.5	Daten-Import und -Aktualisierung	67
6	Eva	luation	73
	6.1	Ziele und Vorgehensweise	73
	6.2	Evaluation mit Kooperationspartner A	74
	6.3	Evaluation mit Kooperationspartner B	77
	6.4	Zusammenfassung	79
7	Zus	ammenfassung und Ausblick	81
	7.1	Ausblick	82

Α	Anh	ang	83
	A.1	Technische Realisierung des ersten Prototyps	83
	A.2	Technische Realisierung des zweiten Prototyps	87
	A.3	Java Implementierung der Sankey-Metrik	87
	A.4	Ticket-Daten-Modell: SQL-Skript zur Erzeugung des Datenbank-Schemas	93
	A.5	Ticket-Daten-Verarbeitung: Message-Driven-Bean zum Empfang einer	
		TicketJournalMessage	94
	A.6	Ticket-Daten-Aktualisierung: XMLRPC-Dienst und Trac-Plugin $\ \ldots \ \ldots$	96
Lit	teratı	ırverzeichnis	101

Tabellenverzeichnis

5.1	HashMap $ticketChangeMap$	66
5.2	Kanten des Sankey-Graph-Modells	66

Abbildungsverzeichnis

2.1	Maß-Informations-Modell nach ISO/IEC 15939	7
2.2	Goal-Question-Metric-Ansatz	11
2.3	Energiefluss-Sankey-Diagramm	13
4.1	Schaltzentrale eines industriellen Prozesses	25
4.2	Der Scrum Prozess	27
4.3	Backlog mit Kennwerten	28
4.4	Erster Prototyp	34
4.5	Bulletgraph (links) und kombiniertes Liniendiagramm/Histogramm	
	(rechts) aus MeDIC-Dashboard	35
4.6	Standard Trac-Workflow in orthogonaler, planarer Darstellung	36
4.7	Eingabemaske zur Angabe eines Filters bei Ticketabfragen in Trac	37
4.8	Variante 1 des zweiten Prototyps	39
4.9	Variante 2 des zweiten Prototyps	41
4.10	Visualisierung der Ticketeigenschaft "zuständige Abteilung"	45
5.1	River: Technologieunabhängige Schichten-Architektur	51
5.2	River: Technologieabhängige Architektur	53
5.3	Navigationsleiste in $River$	54
5.4	Import aus einem Trac-System	57
5.5	Import aus einer exportierten Ticket-Daten-Datei	59
5.6	Analyse mit <i>River</i>	62
5.7	Klassendiagramm der Filterung	65
5.8	Visualisierung der Ticket-Änderungen im Sankey-Diagramm	67
6.1	Evaluations-Szenario: Status-Fluss	75
6.2	Evaluations-Szenario: Ticket-Bearbeitungs-Fortschritt	
6.3	Evaluations-Szenario: Geschätzter Aufwand	76
6.4	Evaluations-Szenario: Einschätzung der Zuständigkeit	
6.5	Evaluations-Szenario: Häufigste Fehlerursache	79

Liste der Quelltexte

2.1	Body einer HTTP-Anfrage an einen XMLRPC-Dienst	16
5.1	Auszug aus sankey.xhtml	55
5.2	Auszug aus SankeyBean.java	55
5.3	Entität Ticket (Auszug aus Ticket.java)	64
5.4	Entität TicketChange (Auszug aus TicketChange.java)	64
5.5	JSON-Darstellung des Sankey-Diagramms	67
A.1	Java XMLRPC-Dienst des ersten Prototyps	83
A.2	SankeyCalculatorBean.java	87
A.3	SQL-Skript zur Erzeugung des Datenbank-Schemas (createDatabase.sql) .	93
A.4	Auszug aus TicketJournalMessageReceiver.java	94
A.5	GplcrsXmlRpcService.java	96
A.6	Trac-Plugin gplcrs.py	99