
2. FOUNDATIONS

Model states and therefore a suitable modeling language rather than a natural language
can be used to express it. This modeling in fact allows accuracy, reduces ambiguity
and gains the possibility of expressing the structure of information. The ideal modeling
language used to represent metrics must be generic enough so that any conceivable
metric can be expressed but, at the same time, concrete enough so that all the metric
concepts can be treated with specific semantics. Also, the language must allow the
modeling from systematic adaptation of metrics in a very changing environment and
at the same way must keep most of the commonalities unmodified.

For example, Unified Modeling Language (UML) [Obj10] can be used as a language
to express metrics. UML is a standardized general-purpose modeling language in the
field of Software Engineering described by a number of class diagrams. By the very
nature of object orientation, UML is multi-purpose and at the same time limited to the
set of concepts its authors choose to include. This means that the representation of
metrics is possible and the usage of UML would facilitate model driven development
from a tool that could be supporting the tailoring of metrics.

Another alternative, besides UML, is a domain-specific language (DSL) [Dun94]. This
specification language can be used to fit the representation of metrics as well. However
for the sake of applicability, which can be limited in comparison to learn the language,
the UML is selected as the language included in this work for representation purposes.

2.2. Metamodeling

A way to avoid misunderstanding regarding the Measurement Information Model is to
establish a shared, agreed-upon set of concepts and terms and use them systematically
for every communication. It is worth emphasizing that not only metric concepts and
terms must be standardized across the organization, but also the mapping between
them. This means that there is small value in establishing the terms to be used and the
concepts in play if the relationships between them are not equally defined.

The term metric is probably the best example, as it is commonly misused to describe
many different measurement concepts. Without concise and consistent terminology,
effective communication among stakeholders is impossible. Because decision makers
need to fulfill their measurement information needs, consistent measurement terminol-
ogy is mandatory. This is achieved by the use of meta-models, where meta- indicates
something further or beyond. Metamodeling, its characterization and needs are intro-
duced in the next section.

2.2.1. Meta-models

The term meta-model is a qualified variant of model. This recommends that metamod-
eling is a specific kind of modeling. In fact, metamodeling is the analysis, construction
and development of meta-models, which are a qualified variant of models. The differ-

14



2.2. Metamodeling

Figure 2.4.: Type-Instance relationship

ence between a regular model, one that is not a meta-model and a meta-model is that
the information represented by a meta-model is a model itself. In epistemology and
other branches of philosophy, the prefix meta- is often used to refer to its own cat-
egory; on this concrete case, meta- means that the metric model that is being built
represents other models, e.g. a metric meta-model is a model of the different project
models within a certain organization. This relationship is often described as parallel-
ing the Type-Instance relationship. In other words, the meta-model (Type) and each
of the models (Instances) are composed of different content and are described using
different languages (natural of software engineering languages). An example of such
Type-Instance relationship is depicted in Figure 2.4.

There is one aspect that makes metamodeling a special kind of modeling: the subjects
of metamodeling are models; in other words, the input and output artifacts are made of
the same stuff, e.g. they are of the same type. This gives metamodeling a recursive na-
ture that makes it much more complex than other modeling areas in which the subject
being modeled is of a different nature.

The description of metamodeling and meta-model, provided above, is not especially
related to metrics; in fact, any model that provides the language to represent models
is a meta-model. The boundary to metrics refers to the fact that metrics are based in
a measurement information model. The next statement may sound odd at first, but
it is included to get this idea of metamodeling. If the metric is a model, creating that
metric is modeling, whereas creating the language concepts used to describe the metric
is metamodeling. Consequently, the language used to express a metric is a meta-model.

As it has been said before, the concepts of meta-model and metamodeling are not
necessarily tied to metrics, but the current work is tied to metrics; therefore the focus
on this particular application of metamodeling is also tied to metrics. According to
this, it can be mentioned that:

"Metric meta-model is a domain-specific language oriented towards the

15



2. FOUNDATIONS

representation of a set of metrics within an organization."

And also:

"Metric metamodeling is the analysis, construction and development of
the models applicable and useful for modeling metrics."

The metrics are expressed as a structure binding the relevant entities and attributes of
concern with the information needs in the organization. These boundaries or relation-
ships between entities and attributes are rich and complex. The meta-model helps to
address these relationships. This structure needs a way to communicate these informa-
tion needs and for that reason, it is also important to include them in the metamodeling
as a mean of representation. The Measurement Information Model (see Section 2.1.2)
can be used for reference during metamodeling. Traditionally four aspects for the
metric metamodeling have been identified: metrics and their approaches; entity of
measure and type of scale; information needs and interpretation aids and; reporting.
These aspects are described below.

Metric and measurement approach. The core element from the meta-model is
the metric. According to the Standard ISO/IEC 15939 [Sta07], the metrics are
classified in two types, either base or derived. A base metric is a metric de-
fined by a specific metric method, explained later on this section. Executing the
method produces a direct value for the metric. An example of such metrics is
Earned Value which describes how much of the resources have been consumed
from the team members at a certain point of time. A derived metric is a met-
ric that is defined as a function, covered here later, of two or more base and/or
derived metric. An example of the last type of metric is the productivity that is
derived by dividing hours of effort by the lines of code.

The measurement approach describes the specific implementation of a metric
method or function within a given context. A method can be expressed in a
formal language or simple textual description, while the function is typically
represented in a mathematical form.

Entity of measurement and type of scale. Every metric requires two important
aspects. The first is the entity of measurement, which binds it to a portfolio
of metrics belonging to the domain model. This can ensure that metrics are
collected only from the entities for which they are defined.

The second aspect that every metric requires is a scale. A scale is a set of values,
continuous or discrete, or a set of categories to which an attribute is mapped. Ev-
ery scale has a type, which specifies the values and also restricts the operations
allowed for that type.

Five types of scale2 are commonly defined:

2Standard ISO/IEC 15939 [Sta07] manages 4 types of scale, whereas Lichter uses an additional type of
scale: absolute [Lic07]

16



2.2. Metamodeling

Interval - numeric data for which equal distances correspond to equal quanti-
ties of the attribute without the use of 0 values. Example: week calendar.

Ordinal - discrete rankings. Example: excellent, very good, good and bad.

Nominal - categorical data. Example: HR, Logistic and Personnel.

Ratio - numeric data which is additive. Example: cost from development.

Absolute - data cannot be compute in another scale. Example: number of
found errors during testing. Unit of measurement: error.

Information needs and interpretation aids. Information needs are the starting point
to measure a product or process. Information needs are textually described. To
satisfy an information need, the measurement results need to be interpreted in
context of these information needs. The interpretation aids provide an evaluation
of specified attributes derived from an analysis model with respect to defined in-
formation needs. Interpretation aids are the basis for measurement analysis and
decision making. Indicators are formal interpretation aids. Therefore, value
indicators are what should be presented to stakeholders.

Reporting. The communication of the measurement results within the organizations
is equally important as the collection of the metrics. For this purpose, a report is
specified and with it the measuring results are displayed in a common document.

Regarding the modeling language, metamodeling must provide a language (generic or
more likely metric domain-specific) that offers the necessary expressiveness so that
any conceivable metric can be appropriately specified. It should be made as few as-
sumptions as possible about the organization and projects needs when defining this
language.

Finally, the modeling language used to represent the metrics should be able to ex-
press measurement and reporting concepts such as derived metric, indicators and re-
port. From a cognitive perspective, this means categorizing into well defined groups
or sub-models, which in turn, involves having a clear notion of the concepts and their
surrounding environment. For example, if the modeling language lacks of the concept
report visualization, how could a metric be communicated? Again, from a cognitive
perspective, the only way to implement a categorization of a concept is based on that
concept.

2.2.2. Metrics at the Meta Level

Metamodeling is used to provide the degree of formality that refers to metrics. This
representation can involve inheritance or association relations. For example, base and
derived metrics have a common ancestor. Although they both belong to the metric root,
it is not possible to completely join them. It is necessarily to make the differentiation
since they differ on their measurement approach.

17



2. FOUNDATIONS

The goal from the resulting metric meta-model is a generic content. That is, it looks for
the presentation of aspects related to measurement that are common to all the intended
audience. It is not expected to introduce terms hard to grasp. For this purpose, there are
a number of standards to introduce key concepts in the context of metric definitions.

Standard ISO/IEC 15939 [Sta07] defines a model for measurement process by spec-
ifying the steps that are necessary to measure products and processes. The standard
introduces the Measurement Information Model (see Section 2.1.2). This describes
how information needs are linked to the measured entities.

IEEE Standard 1061 [Sta05] defines a concept model for establishing quality factors
and identify, implement, analyze and validate products and processes based on quality
indicators. The standard results on this so-called quality factors that will be represented
by direct quantitative metrics. This standard can be used to create a common definition
of metrics in heterogeneous environments or develop a domain-specific language for
metrics.

2.2.3. MeDIC Tool

The MeDIC (Measure Documentation, Integration and Calculation) Tool [VHLN08]
was developed to improve the measurement portfolio of a full-service IT provider of
one of the biggest financial services groups in Germany. The MeDIC Tool addresses
three key aspects. First, the current collection of metrics from the organization must
be reviewed and from there, it should be possible to define a collection of metrics for
the organization and also their respective reporting. Second, the generated documen-
tation should be role-specific. Finally, there should be a series of reports oriented to
management.

A two steps approach was followed to get to the final product. The approach started
with the definition of metrics, which was formalized by using metamodeling. Af-
terwards, the development of the tool was started. The content from both steps is
explained below:

Metric meta-model de�nition. The definition of the metric meta-model aims to
reach two goals, which are:

1. It should be complete enough, that it works as the basis for the metrics
definition and their respective approaches and, the documentation from
the metric results should be possible to define.

2. It should be technically as detailed and consistent as possible with the met-
ric terms, so it can be used as a basis for a model-driven development tool.

An illustration from the metric meta-model is shown in Figure 2.5. This metric
meta-model can be split in two major parts: the measurement information model
(represented by all the entities, with exception of the entity Report) and the
means of visualization.

18



2.2. Metamodeling

Figure 2.5.: The core from the metric meta-model

Tool support. The MeDIC tool consists of three parts:

Metric-Editor. A tree based editor, developed with EMF-Technology3, which
was generated out of the metric meta-model. The editor allows the defi-
nition of metrics, their approaches and reports for visualization. The vali-
dation of these definitions is covered with assistance of OCL instructions
(completeness and consistence is verified).

Ongoing maintenance and improvement on the metrics is supported. Fi-
nally, project specific metric definitions can be created. These project spe-
cific metrics are frequently adjusted from the organizational wide defined
metrics. Figure 2.6 illustrates a screenshot from the MeDIC-Editor. Each
element from the tree represents an entity from the metric meta-model.
Every element has associated a set of properties-values, shown below the
tree structure.

Documentation generator. The documentation is produced in the form of
HTML-Documentation, which can be stored in the organization repository.
Thus, making it available across the organization. The generator is base on
a model-to-text transformation and can be adjusted to fit individual needs.

3Eclipse-based modeling framework and code generation facility for building tools and other applica-
tions based on a structured data model [Ecl10].

19



2. FOUNDATIONS

Figure 2.6.: Screenshot from the MeDIC Graphical User Interface (GUI)

Calculation tool prototype. In order to perform any calculation, the mea-
surement methods and function have to be specified as OCL instructions.
In order to effectuate the calculation, the tool iterates over all the required
elements of the metric meta-model and the results are provided as reports.

The MeDIC Tool allows storing existing metric documentation in a single, integrated
and consistent way. It also allows metrics to be available as a reference to any who
requires it. Since the core of the tool is the metric meta-model, the interpretation of
the results has been improved and the measurement processes are more transparent.

The tool support establishes a process to define and maintain the metrics, which are
managed by the metric expert team. This approach also improves the communication
of new metrics that have been used successfully in a project, to the rest of the company.

20



2.3. Reusable Software Component Models

Figure 2.7.: An application making use of many software libraries

2.3. Reusable Software Component Models

In this part of the chapter, two software component models are provided: software
library and object oriented framework. First, a software component is a unit of com-
position with contractually specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is subject to composition
by third parties [Bos98]. A library is a component made available to develop soft-
ware and an object oriented framework is a special case of software libraries, which
is reusable abstraction of code wrapped in a well-defined Application Programming
Interface (API) [Lic08].

2.3.1. Library

A library is a collection of reusable components, usually classes, used to develop soft-
ware. The content of the library is independent to the application’s context and pro-
vides with certain functionality. That is, it provides access to the code that performs a
programming task.

The usage of the libraries can increase productivity by reusing code and Know-how
and focus in the real problem; improve the quality since the libraries were developed by
specialists; decrease maintenance effort because there exist standard components used
in the different applications. A common usage of libraries is depicted in Figure 2.7.

21


