
2.3. Reusable Software Component Models

Figure 2.7.: An application making use of many software libraries

2.3. Reusable Software Component Models

In this part of the chapter, two software component models are provided: software
library and object oriented framework. First, a software component is a unit of com-
position with contractually specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is subject to composition
by third parties [Bos98]. A library is a component made available to develop soft-
ware and an object oriented framework is a special case of software libraries, which
is reusable abstraction of code wrapped in a well-defined Application Programming
Interface (API) [Lic08].

2.3.1. Library

A library is a collection of reusable components, usually classes, used to develop soft-
ware. The content of the library is independent to the application’s context and pro-
vides with certain functionality. That is, it provides access to the code that performs a
programming task.

The usage of the libraries can increase productivity by reusing code and Know-how
and focus in the real problem; improve the quality since the libraries were developed by
specialists; decrease maintenance effort because there exist standard components used
in the different applications. A common usage of libraries is depicted in Figure 2.7.

21



2. FOUNDATIONS

The control flow relies entirely in the application from the user. In this scenario, the
overall flow of control is dictated by the caller (program or user application) of the
libraries.

2.3.2. Object Oriented Framework

An object oriented framework provides an abstract design and implementation for a
particular domain. Applications are constructed by using the framework as a basis and
extending it with specific functionality, proper from the applications. The probably
most referenced definition of a framework is found in Johnson et at. [JF98]:

A framework is a set of classes that embodies an abstract design for solu-
tions to a family of related problems.

This means, that a framework is a design solution for an application in a given problem
domain. This solution is provided in the form of common code and the user code
is responsible to selectively override or specialize the framework thus providing the
required functionality.

One of the most distinguishing features of a framework is the ability to make extensive
use of dynamic binding, which is the practice of figuring out which method to invoke at
runtime. In libraries or normal user applications, the overall flow control relies on the
application code since the latter invokes the routines from the libraries that were made
available. For the framework, the situation is inverted and its code has the control and
calls the code application when appropriate. This inversion of control is often referred
to as the Hollywood principle, i.e. "Don’t call us - we will call you". In Figure 2.8,
this inversion is graphically illustrated.

A framework comprises a set of abstract and concrete classes. The concrete classes
are intended to be non visible to the framework user, whereas the abstract classes are
intended to be subclassed by the framework user. The abstract classes are referred
to hot-spot [Pre97]. The quality of a framework is directly related to the flexibility
required in a domain; hot-spots help to reach this quality. Hot-spots are points of
predefined refinement where framework adaptation takes place. Framework can be
categorized into white-box and black-box types [Pre97].

White-box framework. A white-box framework comprises incomplete classes, which
means, classes that contain methods without meaningful implementations. The
user is supposed to customize the framework behavior through subclassing. At
the beginning of its life cycle, a framework is inheritance-based. The reason of
this structure is because the application domain is not well understood to make
it possible to parameterize the behavior.

Adaptation is accomplished through inheritance. Users from white-box frame-
work modify the behavior by applying inheritance to override methods in sub-
classes of framework classes. In order to override methods, the framework user

22



2.3. Reusable Software Component Models

Figure 2.8.: The inversion of control

must understand the design and implementation of the framework, at least to a
certain degree of detail. A white-box framework contains incomplete classes.

Figure 2.9 illustrates this property of hot-spots based on inheritance [Pre97].
Class A contains an abstract method (gray highlighted) without a meaningful
default implementation. The abstract method forms the hot-spot in this case.
Subclass A1 has to override this hot-spot. Class A could also be defined as an
interface and the white-box characteristic of a framework does not change using
interfaces.

Black-box framework. A black-box framework offers pre-fabricated components
that are ready for adaptation and is based on composition. The behavior of
this framework is combined by the usage of different combination of classes.
Black-box framework requires a deep understanding of the flexible aspects of
the domain. All this composition means, that a black-box framework provides
with a pre-defined flexibility that is modeled through parameterization. From
the previous premise follows that this type of framework is more rigid in the
domain it supports.

Adaptation is accomplished through composition. Black-box framework offers
pre-fabricated components ready for adaptation where modifications are per-
formed by composition. Hot-spots also correspond to the overridden methods.
The user of the framework doing the adaptation deals with the component as a
whole.

23



2. FOUNDATIONS

Figure 2.9.: Hot-spots based on inheritance (Class A) and composition (Class B)

This property of hot-spots based on composition is depicted in Figure 2.9. Class
B contains subclasses B1 and B2. Both subclasses provide with default imple-
mentations of the abstract methods from class B.

The difference between hot-spots based on inheritance (white-box framework) and
hot-spots based on composition (black-box framework) can be shown in Figure 2.9. In
the case of Class A, the framework user has to subclass A first; in case of class B, the
framework provides ready-to-use subclasses (B1 and B2).

Nevertheless, in practice, an object oriented framework hardly ever is only black-box
or white-box. A framework has parts that can be parameterized and parts that need to
be customized through subclassing [Pre97].

To conclude this section, a framework reduces the amount of development effort re-
quired for software development and it can be used as component in Software Prod-
uct Lines (see Section 2.4). Commonalities are surrounded by the framework code,
whereas variabilities must be provided by the user code. Thus, object-oriented frame-
work proves to be an accurate model for reusable components in product line archi-
tecture. The framework manages variability by encapsulating commonalities and han-
dling the differences, which are integrated by either inheritance or composition.

24


