32

2. FOUNDATIONS

Figure 2.15.: Metaphors in computer science: A) Garbage Collection and B)
Debugging

again and discuss the feedback and ideas. The next step is to create a computer-based
prototype, where the look and feel is closer to the final product. Nevertheless, the
functionality is not an issue during this time. The processes of testing and sharing
feedback are repeated and software prototypes are obtained as a result.

According to the four methods previously described, paper prototyping offers bene-
fits regarding the communication within the development team and the quality of the
product to be developed. Paper prototypes assure the overall quality of software since
they can serve as visual specification of the graphical user interface (GUI). Also, paper
prototyping allows communication between the team members regarding the complete
design of the required UI. Testing prototypes promote early identification of usability
problems even before any code is written, which consequently reduces annoyances of
later changes. Finally, but not less important, the costs can be reduced.

2.6. Metaphor in Computer Science

Metaphor is one important writing mechanism which establishes a total identity be-
tween two concepts or thoughts without binding them and it is used as symbolic con-
nector. Merriam-Webster’s Dictionary defines the word as:

met-a-phor noun

1 : a figure of speech in which a word or phrase literally denoting one
kind of object or idea is used in place of another to suggest a likeness
or analogy between them (as in drowning in money); broadly : figurative
language - compare simile




2.6. Metaphor in Computer Science

A pair of examples from computer science are shown in Figure 2.15. Garbage Collec-
tion (GC) is depicted in Figure 2.15 (A). GC is a special case of resource management
in which the limited resource being managed is memory. The garbage collector at-
tempts to reclaim garbage, or memory occupied by objects that are no longer in use
by the program. Debugging, depicted in Figure 2.15 (B), is a process of finding and
reducing the number of bugs, or defects, in a computer program, thus making it behave
as expected.

33




