
2 Foundations

A little knowledge that acts is
worth infinitely more than
much knowledge that is idle.

(Khalil Gibran)

Contents
2.1 Metrics . 5

2.2 Variability . 13

2.3 Enterprise JavaBeans (EJB) 3.0 21

2.4 The MeDIC Information System 23

The central topic of this master thesis is to enhance the meta-model of the
MeDIC information system. The MeDIC itself is a metric management sys-
tem; therefore the basic knowledge about metrics and process specification of
the metrics are needed to understand the enhancement proposed in this works.
Furthermore, the fundamental concepts to support the analysis about meta-
modeling and variability are covered. Moreover, the technologies that are used
in the current implementation of the MeDIC system are introduced (Enterprise
JavaBeans 3.0, Web Services, etc). The content is not intended to be compre-
hensive.

2.1 Metrics

Measurement is essential for understanding, defining, managing and controlling
software development and maintenance processes. Metrics lies on the needed
of measurement, because we cannot control something that we cannot measure.
Metrics provide a quantitative basis to evaluate the changes in software process.
One of the main reasons of the growing interest in software metric has been the
perception that software metrics are necessary for software improvement.

2.1.1 Metric Introduction

Some basic terms are used in the metric area; metric itself, measure, and indica-
tor. It is important to understand the differences between these terms, because
in some practices the definition and terminology of these terms seems to be
confusing and interchanging. Therefore, the metric introduction will be started

5

2 Foundations

with the definitions of those terms.

Fenton and Pfleegerl [FP97] define metric as:

"The process by which number or symbols are assigned to attributes
of entities in the real world in such a way as to describe them ac-
cording the clealy defined rules"

An entity is an object such as a software module, while an attribute is a mea-
surable property of the object. Entities fall into three categories; products,
processes and resources (Fenton and Pfleeger). A process is any activity related
to software development, a product is any artifact produced during software
development and a resource is people, hardware, or software needed for the pro-
cesses (Fenton and Pfleeger).

McGarry [McG01] defines a measure as:

"A variable to which a value is assigned to represent one or more
attributes"

Indicator is defined as:

"A device or variable that can be set to a prescribed state based on the
result of a process or the occurrence of a specified condition." [IEEE,
1990]

Those terms can be viewed as a hierarchy with indicator at the top and mea-
sure in the bottom, shown in the figure 2.1 below. A metric is an expression
composed of one or more measures. For example, a metric to find the number
of defects during testing process. The measure can be defect count or phase de-
fect detected, while the indicator is the reduction number of the defects found
in testing. Indicators convey the significance of the metrics in the specified
environment.

There are two general types of the metrics; direct and indirect measurement.

Direct measurement Direct measurement of an entity attribute involves no
other attribute or entity. For example, we can measure the length of a
physical object without any other object. Measures below are example of
the direct measures used in software engineering provided by Fenton and
Pfleeger:

• Length of code (LOC)

• Duration of testing process (hours)

• Number of defect discovered during testing process (number of de-

6

2.1 Metrics

Figure 2.1: Hierarchy Of Measurement Terms

fect)

• Time a programmer spent on a project (months)

Indirect measurement Indirect measurements are measures of an attribute ob-
tained by comparing different measurements. The difference between di-
rect and indirect measurement is the metric function, one variable in direct
measurement and n-tuple in indirect measurement. Some common exam-
ples of derived measurement in software engineering are:

• Programmer productivity (code size/programming time)

• Module defect density (number of defects/module size)

In the metric term, direct measurement will be referred as a base metric and
indirect measurement as a derived metric. A derived metric contain two or more
base/derived metrics. A value of a measure can be collected directly from base
metric, while the value from derived metric is a result of function calculation
from one or more base/derived metrics.

2.1.2 Metric Process

According to Fenton and Pfleeger, the process of defining new metrics involves
three steps: identify measurement entities, identify attributes of the entity that
are to be measured, and then define new metrics that can be used to measure
each attribute. These steps should be executed in the order in which they
appear.

Goal-Quality-Metric (GQM)
Goal -Quality-Metric is a top-down approach to establish a goal-driven measure-
ment system for software development, one of the methods for creating metrics
to meet specific information need. This approach was developed by Basili et al

7

2 Foundations

[BCR94] at the Software Engineering Laboratory (SEL), NASA Goddard Space
Flight Center during 1980, was refined during 1990, and now, serves as the
foundation framework for many measurement initiatives.

The GQM approach divides the process into three levels; conceptual, opera-
tional, and quantitative level. Goals are identified in conceptual level; describing
what general objective wants to be achieved. On operational level, questions
that help to understand how to meet the goal are formulated. Metrics identify
the measurements that are needed to answer the question. They are defined on
the quantitative level. The GQM approach is illustrated in the figure below.

Figure 2.2: Goal-Question-Metric approach

GQM approach is divided into three levels as explained before. Goals identify
what we want to accomplish; questions, when answered, tell us whether we
are meeting the goals or help us understand how to interpret them; and the
metrics identify the measurements that are needed to answer the questions and
quantify the goal. The mapping between goals, questions, and metrics is not
a one-to-one relationship. A single measurement goal may apply to multiple
business goals and vice versa; for each goal, there can be several questions and
the same question can be linked to multiple goals as appropriate. For each
question, there can be multiple metrics, and some metrics may be applicable
to more than one question. This hierarchical structure helps ensure that the
measurement program focuses on the right metrics and that we avoid extra
work associated with collecting metrics that are not really needed.

[BCR94] Basili described six-step GQM process as follows:

1. Establishing Goals
Develop a set of corporate, division and project business goals and asso-
ciated measurement goals for productivity and quality

2. Generating Questions

8

2.1 Metrics

Generate questions (based on models) that define those goals as completely
as possible in a quantifiable way

3. Specifying the Measures
Specify the measures needed to be collected to answer those questions and
track process and product conformance to the goals

4. Specifying the Measures
Specify the measures needed to be collected to answer those questions and
track process and product conformance to the goals

5. Preparing for Data Collection
Develop mechanisms for data collection

6. Collecting, Validating and Analyzing the data for Decision Making
Collect, validate and analyze the data in real time to provide feedback to
projects for corrective action

7. Analyzing the Data for Goal Attainment and Learning
Analyze the data in a postmortem fashion to assess conformance to the
goals and to make recommendations for future improvements

One of the key practices of the GQM approach is to derive appropriate metrics.
For a given question, there are many relevant metrics. The key is to identify or
choose those metrics that clearly satisfy the question. Creating metrics more
than are really needed cause extra work and cost. GQM ensures that each metric
has purpose, and no metrics are defined without a purpose. The advantages of
the GQM approach are listed as follows [HRY10]:

• Ensure the adequacy, consistency and integrity of metrics plan and data
collection. The designer of metrics program (that is metrics analyst) must
get a lot of information and the dependence between them. To ensure
the metrics collection is adequate, consistent and integrated, the analyst
should understand why to metrics these properties accurately, what is the
underlying assumption, and what the model will be applied to the use of
metrics data.

• Help to manage the complexity of metrics plan. When a large number of
measurable attributes exist and the number of metrics for the attributes
increases accordingly, the degree of complexity of the metrics plan will
undoubtedly increase. In addition, the approach selected in order to ad-
equately metrics an attribute also depends on the goal of metrics. If you
do not have a goal-driven framework, the metrics plan will soon be out of
control. No one mechanism capturing the dependence between attributes,
the metrics plan is very easy to introduce inconsistency to any changes.

• Help organizations to discuss the metrics and improvements of the goal
driven on the structure of the common understanding and eventually from

9

2 Foundations

a consensus. In turn, this also enabled the organizations to define the
metrics and models accepted widely in the organizations.

Goal-Attribute-Measure (GAM)
Goal Attribute Measure (GAM) proposed by Sazama [Fra08] is a modification
method of the aforementioned GQM method that focuses on attribute defini-
tions rather than question formulation. Sazama described two issues of formu-
lating question in GQM; the questions are frequently too close to the target
definition or too close to the metrics. To derive measures in GAM, firstly we
have to identify measurement customers and their goals. Then a set of target
attributes is determined. In the next step, measured attributes are assessed to
find metric that can measure the property directly. If there is no such met-
ric is found, the attribute must be broken down into sub-attributes until all
the attributes can be measured with the metrics. In GAM, the scope of goals
is on measurement objects while focus is on the structuring and definition of
attributes.

Approach Architecture Scope Focus
GQM Goal Question Metric Project Question

Question Definition
Metric

GAM Goal Measurement Attribute structuring
Attribute object & definition
Measure

Table 2.1: GQM and GAM comparison table

From the whole explanation, there is only small difference between GQM and
GAM. But form the table above, we can conclude that GAM is best used to
measure specific objects; and GQM is used when measuring a software project
as a whole.

2.1.3 Metrics in the Organization

Software metrics as quantitative standards of measurement for various aspects of
software projects being used by many software organizations in order to control
software project, process, and products. Furthermore, a well designed metric
will support decision making by management and enhance the return of invest-
ment in the organizations. In traditional way, the measurement process was
a trivial task that does not get enough attention from management. As the
growth of software engineering knowledge to control and improve the quality
of process, measurement became one of the key points of process improvement
standard in Capability Maturity Model Integration (CMMI) [SEI10].

The key process area of CMMI that covers the use of metrics is Measurement
and Analysis (MA), which specifies that software organization must be able

10

2.1 Metrics

to perform measurement with focus on project management in order to reach
maturity level 2. The purpose of this process area is to develop and sustain a
measurement capability that support management information needs. In more
detail, the Measurement and Analysis process area involves:

• Specifying the objectives of measurement and analysis such that they are
aligned with identified information needs and objectives

• Specifying the measures, data collection and storage mechanisms, analysis
techniques, and reporting and feedback mechanisms

• Implementing the collection, storage, analysis and reporting of the data

• Providing objective results that can be used in making informed decisions
and taking appropriate corrective actions

Organizational wide defined metrics are applied throughout the organization in
management level to achieve the main goal of the organization. Therefore, the
specific usage of metrics is mostly placed in projects within the organization.
Metrics that are defined in a specific project are called as project specific metrics.
Along with projects as a part of the organization, all defined project specific
metrics must be derived from organizational wide defined metrics. Each project
has different information needs. Therefore, project specific metrics derived from
organizational wide defined metrics need to be adjusted and adapted to meet
specific project condition. Based on Tavizon’s works [Tav11], the changes of
metrics are called variations of the organizational wide defined metrics, while
the adjustment process is called tailoring.

On project level of the organization, metrics can provide key indicators of project
achievements, adherence, and quality. On management level, McGarry lists five
area that can be enhanced with metric data:

• Effective Communication
Metrics help the decision maker to manage business goals and associated
tasks at all levels within the organization and communicate the health of
the organization.

• Track Project Plan Goals
Metrics help to describe the status of the project regarding its processes
and products. Metrics also represent the progress of the activities being
executed and the quality of their results.

• Risk Management
Metrics assist with a proactive management strategy. For example, esti-
mations can be analyzed and potential problems could be better evaluated
and prioritized. It is known that the earlier a problem is discovered, the
less cost it will represent for the organization and less problematic to solve
it.

11

2 Foundations

• Elaborate Key Trade-off Decisions
The projects are subject to constraints and decisions being made in one
area, which certainly would impact another different area. These impacts
need to be assessed. The results from the assessment can be used to
elaborate trade-offs meeting the project goals.

• Rationalize Decisions
Decision makers, technical and project managers, must be able to defend
their estimates and plans with historical data. Metrics provide a solid
rationale for selecting the best available option.

It is important to notice, metric data by itself does not guarantee that a project
will succeed. Nevertheless, it provides the decision makers with the sufficient
information to deal with critical and non-critical issues inherent in projects
and to follow a proactive approach. For this reason, metric data supports the
projects and consequently the organization, to succeed. However, it must be
pointed out that metrics are only useful for bigger projects, in small project the
cost in development, interpretation, and calculation of the metrics might too
big to cover.

In the practical usage of metrics in an organization, metrics are selected from
several existing common used metrics to support the business goals. These
metrics are highlight metrics in software development management:

• Source code growth rate reflects requirements completeness and the soft-
ware development process.

• Effort data reflect the nature of the project environment and the type of
problem being solved.

• System size estimates reflect requirements stability and completeness within
the environment.

• Computer usage, which is directly related to the particular process being
applied.

• Error rates reflect the total number of errors vs. estimated errors.

• Reported/corrected software discrepancies allow gaining insight into soft-
ware reliability, progress in attaining test completion, staffing weaknesses
and testing quality.

Choosing metric based on business goals and implementing them properly can
have measureable impact on the business result. But from all existing standard
metrics, the implementation of metrics might not fully achieve the project goal.
Therefore, adjustment metrics based of each project purposes or defining new
metrics are recommended to get better result of metric usage.

12

2.2 Variability

2.2 Variability

Variability modeling is a domain specific modeling technique that helps man-
aging complexity and facilitates reuse, with feature decomposition. Variability
modeling was first introduced for managing variability in software product fam-
ilies, exploiting the similarities within a set of products to reduce the product
development cost. By now, variability became a central concept in software
product line engineering. Several variability techniques have been developed
to address variability based on each engineering disciplines, include software
engineering. Variability modeling consists of variation points, variants, and re-
lationships between them. A variation point is a representation of a variable
item of the real world or a variable property of such an item. Based on the vis-
ibility of the variation point to users and experts, variation points are classified
in two types, the external or internal variation point. Another classification of
variation points is based on the possibility or restriction on providing or selecting
a variant, which are either opened or closed. Variants in opened variation point
are provided by users, while variants of closed variation points are provided by
the system, users are not allowed to add more variants but select variant from
an available list .

A variant is a representation of a particular instance of a variation point, there-
fore, a variant should have a relationship with at least one variation point
[BB07]. The variants can be categorized into two types; primitive and com-
plex. A primitive variant is represented by a number or character, while other
kind of variants will be categorized as complex variant, such as an interval type
of variant.

Relationship between variation points and/or variants is distinguished into vari-
ability dependency and constraint dependency. Variability dependency shows
a variability relationship between variation points and its variants: manda-
tory, optional or alternative dependency. Variant with mandatory dependency
have to be chosen if its variation point is selected. An optional dependency
indicates that none, one or more variants can be selected. Alternative depen-
dency declares the range between a variation point and its variant, whether
the option of none or one variant (or_alternative) or option of one or more
variants (xor_alternative) for each variation point. The constraint dependency
distinguishes a requires and an excludes dependency between variants, varia-
tion points, and variation points to variants. A requires constraint dependency
shows that a variability is depend on another variability, on the other hand,
an excludes constraint dependency indicates that a variability has to eliminate
another variability.

13

2 Foundations

2.2.1 Source of Variability

In more detail, there are some sources of variation in architecture design process
of software engineering [BL01]:

Variation in function A particular function may exist in some products and
not in others. For example, consider a car radio/navigation system within
an automobile. Some automobiles may have a radio and no navigation,
others navigation without the radio and still others may have both. The
characteristics of the radio will vary across different products as well. This
situation may also arise within a single product if the requirements are
not known as the design proceeds.

Variation in data A particular data structure may vary from on product to
another. For example, assume in a call center application two components
exchange information about a customer. This information contains among
other things the mailing address, which is realized as an unstructured
text string. To support a feature in another version of the call center
application (e.g. a structured display of the customers mailing address)
the format of the mailing address has to be different. Variation in data in
most cases is a consequence of variation in function.

Variation in control flow A particular pattern of interaction may vary from on
product to another. For example, assume there is a notification mech-
anism between components in place that informs interested components
that some data values have been changed. One possible implementation
is that all the components get notified in sequence within a single con-
trol flow. In a particular product some of the components to be notified
may actually be 3rd party components, which may have some unknown
behavior. For reliability reason it might be a good idea to direct the con-
trol to a component that is able to do an error recovery in case a notified
component does not return the control.

Variation in technology The platform (OS, hardware, dependence on middle-
ware, user interface, run-time system for programming language) may vary
in exactly the same fashion as the function. A particular piece of mid-
dleware may be required in one product and not in another. The OS or
the hardware may vary from product to product. For example, a sensor
may be connected directly to the controller whose software is being de-
signed or it may be connected over a communication line. If the sensor
is connected directly to the controller, then sensor management software
is needed, if it is connected over communication line then communication
line management software is needed.

Variation in quality goals The particular quality goals important for a product
may vary. For example, the coupling between a producer and consumer of
a data item may be achieved via a publish subscribe mechanism or via a

14

2.2 Variability

permanent connection. The choice of one or another of these two options
embodies a choice of the importance of performance and modifiability and
this choice may be different in different products.

Variation in environment The fashion in which a product interacts with its
environment may vary. For example, a particular piece of middleware
may be invoked from either C++ or Java. The invocation mechanism
may vary from one product to another.

2.2.2 General Variability Meta-Model

In order to reduce the complexity and gain understanding about variability,
the variability meta-model as a centralized modeling of variability proposed by
Bühne et all [BLP04] provided in figure 2.3. This variability meta-model ex-
pressed all the variability components that have been described in section 2.2.1.
. Variation point and variant are the main components in variability model-
ing. The variability dependency shows the relation between variation point and
variant and specializes into three: alternative, optional, and mandatory. The
relation between variation points, variants, and between variant and variation
point to constraints the variability model represent with constrain dependency,
whether it is requires or excludes.

Figure 2.3: The variability meta-model

2.2.3 Variability Mechanism

Modeling variability is related with variability mechanisms and variability tech-
niques. Variability mechanisms are common ways to introduce or implement
variability. While variability techniques model the variability that is provided
by the product artifacts with well defined language for representing the variabil-
ity [GW04]. Variability techniques are aimed to support variability management
during product derivation. Several variability techniques have been developed

15

2 Foundations

with their own concepts to capture variability, some of the techniques are sup-
ported with tools to model variability. This section will focus on variability
mechanisms.

Gomaa and Webber [GW04] describe four different mechanisms to model the
variability; using parameterization, information hiding, inheritance, and varia-
tion points. Furthermore, other mechanisms have been indentified, such as con-
ditional compilation, patterns, generative programming, macro programming,
and aspect oriented programming. Not all mechanisms will be discussed here,
but four mechanisms based on Gomaa and Webber as a basic variability mech-
anisms and pattern mechanism that will be discussed further in this master
thesis.

Parameterization
Parameterization is variability mechanism where the variation is to the value of
the parameters, which allows the user to change the values of attributes by pro-
viding the capability through the component’s interface to initialize or change
the value of parameterized attributes. Modeling variability with parameteri-
zation takes shorter time for development, but the variability is limited as no
functionality can be changed.

Information Hiding
Modeling variability using information hiding is where several version of the
same component are built with the same interface. The variants are the differ-
ent versions of the same component, and the variability is hidden inside each
version. The user selects a component from an available set of choices and
inserts it into the application. Using information hiding, the variability is lim-
ited to the available choices, but this mechanism offers higher variability than
parameterization because the functionality can be varied.

Inheritance
The inheritance variability mechanism is shown as generalization-specification
hierarchy, where the variants do not need to adhere to the same interface. Vari-
ants is specialization of others components, there subclasses can extend the
interface of superclass by adding new operations or override existing operations.

Variation Point
Modeling variability using variation points allows the user to create specific and
unique variants. Using variation points , the user may build a system compo-
nent with unique variants built from the variation points. Modeling variability
using variation points provides the most variability and flexibility in creating an
application.

Pattern
A design patterns is a proven design solution for a particular problem that has
been used in many applications. Keepence and Mike [KM99] applied the pat-
tern mechanism to model variability of spacecraft mission-planning system. The
pattern applied in the spacecraft mission-planning system is adapter pattern,

16

2.2 Variability

which is deal with variability in structural rather than behavior functionality.
Patterns provide reusable, routine solutions to certain types of problems and
support the reuse of underlying implementations. Modeling variability using
patterns starts by analyzing the user requirements from systems and build an
object-oriented family model using a set of predefined patterns. With pattern,
mapping from requirements to implementation is directly visible. Pattern per-
mits user to model variants using a single pattern, and support modeling for
complex system. Another design pattern that are frequently referred to variabil-
ity mechanisms are Strategy, Template Method, Factory, Decorator and Builder
pattern.

In the implementation of variability more than one variability mechanism can be
combined to find the best way in introducing variability to the system. Several
variability mechanisms have been developed from the basic mechanisms above
to adjust particular situation.

2.2.4 Variability Techniques

Over the past years, a lot of research regarding variability have been conducted
with several publication and modeling techniques as the results. These variabil-
ity modeling techniques aim at representing and managing the variability more
easily. Each of these variability techniques has similarities and differences among
the others in modeling variability and tools support, which is designed for a par-
ticular situation. Feature modeling with feature diagram was first introduced in
Feature Oriented Domain Analysis (FODA) by Kang et al [KCH+90]. Feature
modeling has been widely adopted for modeling variability in software product
line, afterwards, several variability modeling techniques and tool supports were
developed based on the initial approach presented in the feature modeling.

Feature Modeling

The aim of feature modeling was to visualize the variability domain in feature
diagram. The primary focus was to establish commonalities and differences of a
product as features. These features are the basic building block of any feature
model. The definition of feature based on Kang et al:

"A feature is a prominent or distinctive user-visible aspect, quality,
or characteristic of a software system or systems"

Feature models express the variability through mandatory, optional, and al-
ternative features, and dependencies between features. The main notations of
feature diagram are represented in the table below:

Table 2.2: Notation of feature diagram

17

2 Foundations

A feature diagram can be defined as a visualization of notation that hierarchi-
cally structures the set of features from the model, which is basically a tree. A
simple car prototype example presented in figure 2.4. The car prototype dia-
gram specifies possible configuration for a car, which has mandatory parts (cars
body, transmission and engine) and optional car feature (pulls trailer). The
transmission can exclusively be automatic or manual, while the engine can be
an electric engine and/or gasoline.

Feature modeling has been more and more appreciated by requirements engi-
neer. Therefore, the quality of a feature model is determined by a given domain
and integrity of the model itself. As the adequate capture domain can hardly
be analyzed and reviewed, the integrity of the model can shows deficiencies as
mention by Maßen and Lichter below:

• Redundancy , A feature model contains redundancy, if at least one seman-
tic information is modeled in multiple ways

• Anomaly, A feature model contains anomalies, if potential configurations
are being lost, though these configurations should be possible.

18

2.2 Variability

Figure 2.4: Feature diagram example - Car prototype diagram

• Inconsistency, A feature model contains inconsistencies, if the model in-
cludes contradictory information.

Others Variability Techniques

Other variability techniques have been developed as extension of feature model-
ing from FODA, such as featureRSEB and Cardinality-Based Feature Modeling
(CBFM). While some other techniques focus on variability with use case, such
as the research of Ma?en and Lichter, and Halmans and Pohl. Another vari-
ability technique such as Variability Specification Language (SVL), Koalish,
Pure:Variants, CnnIPF, and COVAMOF introduced variability modeling used
their own concepts.

Sinnema and Deelstra [MS07] worked in classifying variability modeling tech-
niques based on a framework of key characteristic, such as how variability in-
formation is represented; how choices can be extended, changed, or customized;
how the specific selection from the available options is represented; available
tool support; etc. Based on those classification categories, Sinnema and Deel-
stra chose five variability modeling techniques to be compared; VSL, ConIPF,
CBFM, Koalish, and Pure:Variants. Furthermore, the comparison shows the
similarities and differences by exemplifying with a running example. The com-
parison is not meant to promote a specific technique, but rather than to focus
on variability in requirements. The variability modeling classification identifies
three important issues in variability modeling:

• Variability management is a complicated task, where many choices and
constraints are involved.

• Most variability techniques lack a description of a process, which is re-

19

2 Foundations

quired to have a successful deployment.

• Most techniques are based on a principle that requires a fully formalized
variability model.

2.2.5 Variability Management in Software Product Line (SPL)

Implementation of variability concepts are mostly applied in software product
line engineering, where the paradigm of variability in identifying commonalities
of a product for reusability is really applicable. A Software Product Line is
a set of products sharing a common architecture and a set of reusable com-
ponents [SB00]. The architecture of software product line consists of a set of
reusable components and a number of software products. A component in the
SPL architecture implements a particular domain of functionality. A product
is constructed by composing the components in the architecture. The approach
used in software product line begins with selecting a set of products compris-
ing a product line, and identify requirements that are common to all products
(commonalities) and what differentiate them (variability).

Managing variability in software product line consists of the following tasks:

• Indentifying the variability. The initial phase of the software product
line development process is to analyze the requirements of a number of
products. The aim of this process is to identify what is shared by all
products and where the products differ.

• Introducing variability to the system. After variability is identified, the
next process is to find variation points of a system and to choose a mech-
anism that will be used to implement the variability.

• Collecting the variants. The result of collecting the variants is a set of
variants associated with a variation point.

• Binding the system to one variant. Binding the system is done by associ-
ating a particular variation point with one of its variants.

The aim of identifying variability in Software Product Line can be viewed in
two dimensions; space and time. The space dimension is concerned with the
use of common parts in multiple products, to minimize the cost of a product
development. The time dimension is concerned with the ability of product to
support evolution and changing requirements in various contexts, reduce the
time to market of product distribution .

20

2.3 Enterprise JavaBeans (EJB) 3.0

2.3 Enterprise JavaBeans (EJB) 3.0

2.3.1 EJB 3.0 Introduction

Enterprise JavaBeans (EJB) is a server side component architecture that encap-
sulates the business logic of an application. The EJB business applications are
written in Java, scalable and can be deployed on any platform that supports
the EJB specification. EJB was developed by IBM in 1997, and later adopted
by Sun Microsystems in 1999. After few years enhancement under the Java
Community Process EJB 3.0 was released in May 2006 with radical changes
from previous version [Sik08]. One major change in EJB 3.0 is the handling
of persistence that is no longer provided by an EJB container, but rather by a
Java Persistence API (JPA) persistence provider. Other feature introduced in
EJB 3.0 is metadata annotations.

EJB applications are deployed and run under the control of an EJB container
within an application server. The EJB container provides common services
needed in enterprise applications such as persistency, transactional integrity,
security, and system management .

2.3.2 EJB 3.0 Artifacts

There are three main artifacts in business application of EJB technology: session
beans, message-driven beans, and entities.

Session Beans

In EJB technology, encapsulation of business processes, such as book reserva-
tion, transfer funds are handled by session beans. These session beans are not
persistent and not stored in a database or other permanent file system, but
session beans can create and update entities which are persistent. There are
two types of session beans: stateless and stateful. Stateless session beans are
business objects that do not have a state associated with them, such as sending
email to customer support as one-off operation and one step process. On the
other hand, stateful session beans maintain a state for an object. The reference
to a bean will end when the users end the session or the session times out. As
mention before, session beans are transient, therefore the state is not written to
a database but held in the containers cache. The common example for stateful
session beans is an online shopping cart, where the customer’s order will be
maintained until the user finished or canceled the purchase, or until the session
times out. Both types of session beans uses annotation to indicate the type of
the beans (@Stateless or @Stateful).

21

2 Foundations

Message-Driven Beans

Message-driven beans are business objects that are executed by messages instead
of method calls. Message-driven beans are stateless, and like session beans, they
can invoke other session beans and can interact with entities . An example for
message-driven beans is a registration process: a session bean sends a message
to a JMS queue requesting that a new customer be added to the database.
The message will be a customer object with its detail information, the message-
driven bean will simply add the customer to the database when receiving the
message.

Java Persistence API (JPA)

In EJB 3.0, entities are persisted by a persistence provider or persistence engine
implementing the JPA specification. JPA is a separate specification and appli-
cation from the EJB container that provides some services for EJBs, such as the
Entity Manager, object or relational mapping, the Java Persistence Language
Query (JPLQ). The Entity Manager is provided for persistence, transaction
management, and managing the lifecycle of entities. Object/Relational annota-
tions provide the mapping for entities into relational database table and JPQL
retrieves the persisted entities.

2.3.3 EJB architecture

EJB 3.0 is a part of Java EE version 5 (Java EE 5). Therefore, the EJB 3.0
architecture is based upon the Java EE 5 architecture with a 3-layer model:
presentation layer, business layer, and database layer. The presentation layer
presents the user interface and handles interactions with the end users. The
business layer is responsible for executing the business logic. The data layer
stores business data.

As shown in figure 2.5. [Sik08], EJB artifacts are placed in the business layer
of the Java EE 5 architecture. The business layer was divided into two sub-
layers, business logic layer and persistence layer. The business logic layer is
concerned with business processing, where session beans and message-driven
beans are deployed and executed in the EJB 3.0 container. The persistence
layer handles entity artifacts, which are persisted to the database using the
JPA persistence engine. The EJB architecture offers a standard for developing
distributed, object oriented, component-based business applications. If EJBs
(session and message-driven beans) have been well designed, they can be reused
by other applications. EJBs are distributed in the sense that they can reside on
different servers and can be invoked by a remote client form a different system
on the network.

22

2.4 The MeDIC Information System

Figure 2.5: Java EE 5 Architecture

2.4 The MeDIC Information System

2.4.1 The MeDIC Introduction

MeDIC is a metric management software system to define, maintain, document,
and develop metric. MeDIC was developed as a support tool to manage metric
within a project or organization. A support tool to manage, communicate, and
develop metrics will help to avoid errors, misinterpretations, or sporadic use of
metrics, and help to share the knowledge from the metric experts.

Using Enterprise JavaBeans 3.0 as the base technology, the Research Group
Software construction (SWC) of the RWTH Aachen developed a web-based
software tool to support company’s employees in the definition of new metrics
and reuse of existing knowledge concerning metrics. This tool is used at Gener-
ali Deutschland Informatik Service GmbH who is a cooperation partner of the
research group.

The specification process in this system is based on GQM and GAM methods
as mention in section 2 .1.2. The first step is to specify the goals and the
requirements of the measure. These requirements will be deducted, and later
will be described as the information needs for metrics (as a question). The next
steps are analysis, specification, modeling, and documentation to ensure that
the metric will be able to answer the information need.

As mentioned in section 2.1.3, CMMI covers the use of metric in the Measure-
ment and Analysis (MA) process area. The MeDIC system is designed to meet
the following requirements of the CMMI:

23

2 Foundations

• Establish and maintain measurement objectives that are derived from
identified information needs and objectives.

• Specify measures to address the measurement objectives.

• Specify how measurement data will be Obtained and stored.

• Specify how measurement data will be analyzed and reported

2.4.2 Main processes in The MeDIC system

There are four main processes in the MeDIC system; managing project, standard
metrics, project specific metrics, and information needs. Defining the project is
the initial step of the MeDIC system, follow by proposing or choosing metrics.
Metrics are divided into two type, standard metric and project specific metric.
Standard metrics are the best practice metric used by the organization, each
project can choose the available standard metrics that have same information
need. The second types of metrics are the project specific metrics, which are
created for each specific project purposes. Both of the metrics belong to at least
one project in the system. Information needs are categorized in several types
to manage metrics in organization. Project that needs metric with the same
information need might reuse available metric.

Initiate and manage the project Create a new project by identify the project
name, the user will automatically be assigned as Project Manager. Project
Managers have the authorities to add other users into the project and man-
age the roles of all users, manage the project itself, including all metrics
that belong to the project, and deactivate the project.

Manage the usage of standard metrics for a project Managing standard met-
rics starts by choosing one of the available standard metrics based on the
information need, and adding this standard metric to the project. While
adding the standard metric, some information needs to be redefined to
adjust the general standard metric to the current project. All users will
be able to see the adjustments and compare them to the default of the
standard metric.

Manage the project specific metric Before a new project specific metric can
be proposed, the information need has to be defined, by choosing the
available information need or create a new one. The next step is then the
definition of all the metric specification parameters.

Manage information needs Information needs are grouped in several categories.
With this management, the user can choose the available standard met-
ric easily based on their information need. Defining the information need
before proposing a new metric will be easier as well.

24

2.4 The MeDIC Information System

2.4.3 Use case diagram

The use case diagram in figure 2.6 shows the overall use cases of the MeDIC
system. There are four actors that are associated with the MeDIC system:
guest, metric data provider, metric client, and metric coordinator. All actors
have specific activity based on their privilege to manage projects, metrics, and
information needs on the system as shown in the use case diagram below. The
implementation of the MeDIC system is still in progress, not all cases have been
implemented. The current implementation is the MeDIC version 2.0.

2.4.4 The MeDIC system architecture

The application architecture of the MeDIC system is based upon the Java EE
5 standard architecture (see section 2.4.1.). The architecture is divided into 3
parts: presentation layer, business layer and data layer as shown in figure 2.7.
The presentation layer will provide the GUI for user to communicate with the
system via browser. This presentation layer is divided into 2 parts, the JSPs
(Java Server Pages) for HTML code and the servlets for the logical code.

The business layer is derived into 4 EJB parts: Application Facade, Controller,
Management, and Entity. The separation between Entity and Management was
elected to the entity management not to mingle with the persistence entities
itself. The business logic is defined in the Controller, to control the Management
and Entity bean. The application Facade forms abstractions from the Controller
to ease the communicating with the presentation layer.

2.4.5 Implementation of the MeDIC

The system is designed using IBM Rational Application Developer for Web-
Sphere Software version 7.5.3 (RAD), a commercial Eclipse-based integrated
development environment (IDE). RAD V.7.5.3 provides Java Enterprise Edi-
tion (JEE) technology, including: Enterprise Java beans (EJB) applications
for distributed, secure applications with transactional support, Java Persistence
API (JPA) applications to access persistent data, and Java Server Pages (JSP)
or Java Server Faces (JSF) for developing presentation logic. The application
server, WebSphere Application Server (WAS) V.7.0 is the compatible server for
the application environment that we used. And for the database, BD2 by IBM
is used as our relational model database server.

25

2 Foundations

Guest

Metric Client

Metric Coordinator

Metric Data Provider

Edit User Profile

View Related
Project List

View Project Specific
Metric List of ProjectView Metric

Specification

Warn Information
Changes

Edit Metric
Specification

Use Standard MetricPropose New Metric

Be Informed about
Necessary Activities

Deactivate Metric
Specification

View Deactive
Metric Specification

Edit Project Role

Add New User

Commenting Metric
Paramater

Link for Maintain
Specification

Link for Maintain
Project

Use Standard Metric
from external

Dokumentation

MeDIC System

Provide Metric
Evaluation

Add New Project

Deactivate Project

Edit Standard
Metric

Manage Information
Need & Category

Import Project List

Supervise the
Project

Overview Pages on
Supervised Project -<redefine>

<include>

<include>

Figure 2.6: Use case diagram of the MeDIC system

26

2.4 The MeDIC Information System

Figure 2.7: The MeDIC System Architecture

27

2 Foundations

28

	Foundations
	Metrics
	Metric Introduction
	Metric Process
	Metrics in the Organization

	Variability
	Source of Variability
	General Variability Meta-Model
	Variability Mechanism
	Variability Techniques
	Variability Management in Software Product Line (SPL)

	Enterprise JavaBeans (EJB) 3.0
	EJB 3.0 Introduction
	EJB 3.0 Artifacts
	EJB architecture

	The MeDIC Information System
	The MeDIC Introduction
	Main processes in The MeDIC system
	Use case diagram
	The MeDIC system architecture
	Implementation of the MeDIC

