
3 Variability Modeling

All difficult things have their
origin in that which is easy,
and great things in that
which is small

(Lao-Tzu)

Contents
3.1 Tasks . 29
3.2 Variability in MeDIC system . 30
3.3 Modeling variability . 37
3.4 Variability mechanism (solution pattern) 49

This chapter presents the analysis of the variability in the MeDIC information
system. After the variation points and its variants are determined, a variability
mechanism is applied to introduce and implement the variability. The vari-
ability mechanism applied for entity variability in the metric system is pattern
mechanism [section 2.2.3.]. This chapter starts with explanation of all tasks
that are executed in this master thesis.

3.1 Tasks

The goal of this master thesis was to find new meta-model design as the en-
hancement part of the MeDIC information system that addresses the variability
issues. To achieve the objective described in the previous section, the following
tasks were proposed:

Get to know about the topic through literature review Comprehend existing
system about metrics and related work about variability. The purpose of
this task is to get understanding about the current system and summarize
basic theories about variability modeling that can be used to enhance the
meta-model.

Investigate and analyze the requirements for the methodology The task starts
with investigation the problem domain to find variation points in the cur-
rent system. Analysis is focused in each variation point, as an enhance-
ment study case in each meta-model to find a best solution pattern.

Development of a general modeling concept of the variability There are so

29

3 Variability Modeling

many variability concepts exist especially in Software Product Line (SPL).
Based on study cases in the previous task, general modeling concept of the
variability that applicable in the MeDIC system is developed. Summary
about the general variability modeling will be present from this task.

Implementation of the variability in the MeDIC information system Describe
the work plan for implementation with new meta-model. Graphic user in-
terface will be proposed from several variation points.

Evaluation of the new meta-model Evaluating the new meta-model to define
the deficiencies and the strength. Performing comparison between the cur-
rent meta-model and the proposed meta-model, to evaluate the advantages
of the works.

Documentation In parallel to all previous tasks described, the work must be
documented in written form.

3.2 Variability in MeDIC system

3.2.1 Variability of Entity Specification

Variability in the MeDIC system focuses on varying degree of entity specifica-
tion. The development of metrics is similar with paradigm of software develop-
ment process, where the initiation phase is started with an abstract description
of the problem domain. Several processes and inputs from user will develop the
metrics from the abstract description into a model that can be implemented.

The variability term used in this work is probably different from the general
concept of common variability that concern about product family with the vari-
ation of product component. Therefore, the following definition will be used
throughout the work to guide the understanding of the work this master thesis.

"Entity variability is the varying degree of entity specification, start
from the initiation form until the complete form of entity that can
be implemented"

The idea for modeling entity variability was started from the user requirement at
initiation phase to propose a metric. Most of the users will propose a metric with
general information that is written in textual description; mention about the
general purpose of the metric, how the metric want to be visualized, and other
requirements. With this rough textual description, parameters or attributes of
a metric could not be determined explicitly. The description of metric later on
will be expanded with specific attributes based on further input from user itself.
The current meta-model of metric in MeDIC system is not support variation
specification of the entity yet. The model only handles the first phase of entity

30

3.2 Variability in MeDIC system

specification, which is textual description. Therefore, the functionality of metric
could not be fully completed.

For example, the information needs specification of a metric. Information needs
are the starting point to measure product or process. The current information
needs are stored and represented as textual description. Whereas, in the de-
velopment process based on GQM method (mentioned in section 2.1.2.), these
information needs have to be formulated into questions. Furthermore, the ques-
tions will be used as references in proposing metric. Metrics that are created
have to answer those questions. On the other case, information needs need
to be categorized. Categorization of information needs will be used to realize
reusability of metrics in organization. Before proposing a metric, user will be
able to search the existing metric with similar information need based on the
category. If the metric is found, that metric can be reused with some adjustment
for their current project. Both of those functionalities haven’t been supported
yet in current MeDIC system.

Process for modeling metric entities variability will be divided into 2 phases:

Analysis Phases Based on the user requirements , variability analysis will start
with defining all of variation points and its variants on the system. Every
entity in metric meta-model will be analyzed to find the possibility of
variability. The entity variability might occur from one or more sources
listed below:

• An entity is defined over several process steps , an entity that is
started with textual description and later on become more specific
with attributes attached to that entity for implementation need, or

• An entity has variation evolution, possibility of an entity to be evolved
into different type of entity, or

• An entity that has variant attributes or cardinality in different project.

Design Phases Model the entity variability with pattern as the variability mech-
anism. A set of predefined pattern will be determined first. Those patterns
are design patterns that are frequently referred to as variability mecha-
nism, provides a way to implement variability, such as ’Adapter’, ’Strat-
egy’, ’Template Method’, ’Factory’, ’Abstract Factory’, ’State’, ’Builder’,
and ’Decorator’. Each of variation point will be model with the suitable
pattern, chosen from that set of predefined pattern. Next step in this
phase is design prototyping. Prototyping will provide a first look of actual
implementation of the system. This prototyping will be discussed in detail
in Chapter 4.

31

3 Variability Modeling

3.2.2 Analyze Variation Points in the MeDIC system

Before defining variation points in metric meta-model, the core aspect of met-
ric meta-model will be introduced. The current metric meta-model of MeDIC
system is shown in figure 3.1 below:

Figure 3.1: The core of metric meta-model

From the metric meta-model above, there are several main entities:

Information need Information need is the starting point of product or process
measurement.

Interpretation fragment The interpretation aids provide an evaluation of spec-
ified attributes derived from an analysis model with respect to defined
information needs. Interpretation aids are the basis for measurement anal-
ysis and decision making.

Indicators Indicators are formal interpretation aids that will be presented to
stakeholders

Report The communication of the measurement results within the organizations
is equally important as the collection of the metrics. For this purpose, a
report is specified and with it the measuring results are displayed in a
common document.

32

3.2 Variability in MeDIC system

Entity of Measurement The first is the entity of measurement, which binds it
to a portfolio of metrics belonging to the domain model. This can ensure
that metrics are collected only from the entities for which they are defined.

Scale The second aspect that every metric requires is a scale. A scale is a set of
values, continuous or discrete, or a set of categories to which an attribute
is mapped. Every scale has a type, which specifies the values and also
restricts the operations allowed for that type.

Measure The core aspect of the metric metamodel is measure entity. As men-
tion in section (2.1.1.) measures are classify into 2 types, base and derive.
Base measure involves no other entity, while derive measure obtained the
value from other measures.

Measurement approach Each measure has a measurement approach to de-
scribe specific realization to obtain the measure’s value. Different type
of measure will have different approach; measurement method or mea-
surement function. Base measure used measurement method expressed
in a formal language or simple textual description, while derived metric
used measurement function represented in a mathematical form with other
measure as the mathematic variable.

A related work concerning the MeDIC system about variability is mentioned
in Tavizon’s works [Tav11] as a metric framework shown figure 3.2 below. The
structure of metric frame is divided into two parts; upper part and underlying
part. The upper part represents the core of metric as variation points and it
consists of four categories: metric, interpretation aids, information needs and
reporting. The underlying part forms the variant part, variability of the upper
part.

Figure 3.2: Metric frame structure

33

3 Variability Modeling

Variability analysis in Tavizon’s work refers to variability in horizontal way,
where the variants are determined as the possibility type of its variation point.
For example, Tavizon analyzed variants of information need in the MeDIC sys-
tem as all possibility of main categories of information need itself: quality, time,
cost and price. Figure 3.3 illustrates the example of information need in graph-
ical notation; shows variants quality, time, cost and price as alternative choice
while the range [1,4] states that at least one variant must be selected and pos-
sibility to select all of the four variants.

Figure 3.3: Variation point "‘Information Need"’

Differ from the variability in horizontal way explained above; the variability in
this master thesis will be focus on entity variability under the same system,
which is MeDIC information system. Entity variability is the varying degree
of entity specification. Some variation points as the result of entity variability
analysis will refer to the same variation points shown in the figure 3.2, with
different variants. Fetching the same example of information need variation
point before, over the analysis phase (will be explain later on next section 3.3),
the variants of information need are determined as the variation specification
state of information need entity: described, formulated or categorized.

Variation Point Based on the variability source mentioned in analysis phase
(section 3.2.1), several entities from metric meta-model are determined as vari-
ation points:

• Information Need
Information need as the starting point of proposing metric is initiated with
text description and over some states of specification information needs
will evolve into implemented model.

• Metric/Measurement
Metric measurement will evolve into different type of measure, either base
or derived metric, while both types of measure are started with the same
initiation form.

• Reporting
Reporting activity is on the last phase of the metric system, to visualize
and communicate the metric itself to the stakeholder. Therefore, differ-

34

3.2 Variability in MeDIC system

ent type of visualization, interpretation or indicator of the report varies
between projects.

In this master thesis, the variability modeling will only be focused on two main
variation points: information need and metric measurement. Information need
as the starting point, while measure is the core element of metric metamodel.
Therefore, the modeling solution will be provided with applicable condition, to
support the modeling of other entity variability in MeDIC system or in the other
system.

Domain Scenario of Variation Points After defining two main variation
points in the MeDIC system, the detail of problem domain scenario will be
described in this subsection. Domain scenario of each variation point will explain
all steps of the process behind the specification of the entity. From the scenario,
variants for each variation point can be defined easier.

Information Need Domain Scenario

Category??? Cost?
Time? Quality?
Risk?

Propose Metric?

Info‐
need
……………
………

Requirement?
Information
that I need
………………………

Info‐
need
……..……

…………….............
........

……..

Figure 3.4: Information need domain scenario

Figure 3.4 as shown above illustrate the domain of information need entity
specification. The process is started with initiation for proposing metric with
textual description of all general information that is needed. The next step
of specification is either categorization or question formulation, both of the
steps have to be accomplished to get the completed entity of information need.
Categorization is a step to group similar information needs with the existing
category in the system, the main category on the current system are cost, time,

35

3 Variability Modeling

quality, content and risk; with several subcategories for each main category.
Categorization aims to realize the reusable functionality, based on the same
category to reuse existing metric. On the other hand, question formulation is
a step to break down the rough description of information need into several
detail questions. This step is carried out with formulating a question that
will be answered by a metric that is proposed later on. The question for each
information need description can be formulated more than one, in one time or
in different step.

Metric/Measurement Domain Scenario

Measure
descriptionp

Approach??

A il bl ??Available??

Figure 3.5: Metric measurement domain scenario

The second main variation point in MeDIC system is measure entity. As de-
picted in figure 3.5, the specification of the measure is started with a description
as well, to describe broad information about the measure itself. The next step
is to specify the measurement method, how to get the value of the entity. There
are two different approaches of measurement, method approach and function
approach. The type of approach will determine the type of measure; either it is
a base measure or a derived measure. Both of the measurement approaches are
first described in a rough description; a simple textual description for method
measurement, or description in mathematical form for function measurement
approach.

The mathematical function is formed from variables, and those variables are
the value of another measure entity, therefore any measure that used function

36

3.3 Modeling variability

approach are categorized as derived metric. Therefore, the next step in derive
measure is to related all measures that mentioned in the function description.
Measures used in the function can be either derived or base measure; for derived
measure will recursively follow the same steps to break down the measurement
approach specification. There are two possibilities to find the related measure
entities, simply connect to existing measures in the system or create new mea-
sures to provide the value for the function if the measures are not available.

3.3 Modeling variability

3.3.1 Determine all variants for each variation point

Variant is variability point of the variation point. The commonalities of all
related variants are reflected in variation point itself. In the metric information
system, the main commonality of an entity is the initiation phase of entity
specification; where an entity is initiated by textual description. From the
scenario domains explained in the previous section, we will define variants for
both variation points; information need and measure.

Information need

The process to identify complete entity of information need is divided into 3
steps: initiation, categorization, and formulation. Initiation is the first step to
describe information need as textual description. Categorization is a process
to group the information need based on the existing category in the system for
reuse purpose. While formulation is a process to break down the information
need from textual description into question form and for one information need
description can be formulated into several questions. The state diagram of
information need is depicted in the figure 3.6

Figure 3.6: Information need state diagram

Based on the process to specify information need entity, the variants of informa-
tion need are determined as the different state of the information need entity;
initiated, categorized, formulated, or completed. Therefore, the first variability

37

3 Variability Modeling

mechanism proposed to model the entity variability of information need is state
pattern; will be discussed later on section 3.3.2.

Measure

From the same initiation point, measure entity later on will evolve into different
type of measure; base or derived. The type of measure depends on the mea-
surement approach chosen to get the value of the measure itself. As mentioned
before, there are two measurement approaches; measurement method and mea-
surement function. From figure 3.5

Figure 3.7: Metric measurement state diagram

3.3.2 A Set of Predefined Pattern

Patterns provide reusability and routine solutions to certain types of problems.
Furthermore, patterns support the reuse of underlying implementation. Choos-
ing a correct pattern for the appropriate problem will help designer to solve the
problem faster with reuse successful designs and architectures. Several existing
design patterns are referred to variability mechanism, to mapping the variability
from requirements to implementation needs. A set of predefined patterns will be
introduced in this section, to explain the structure of the pattern itself and the
applicability for each pattern in variability mechanism. The set of predefined
pattern is consists of strategy, state, adapter and decorator pattern. A solution
pattern will be proposed to provide a way to implement entity variability in the
MeDIC system. The proposed pattern can be incorporated into any system to
build entity variability model, from which they can be derived.

38

3.3 Modeling variability

Strategy Pattern

Strategy pattern is the design pattern most frequently used in the context of
product family engineering. The idea of the strategy pattern is to make different
algorithm variants, which are hidden in the common interface. The algorithm
variants are derived from a default algorithm variant using inheritance. The
concepts of encapsulation and inheritance can be used to implement design
patterns that describe variability. Figure 3.8 depicted the structure of strategy
pattern, as elaborated as below:

• Context; manages the data structures that a concrete strategy operates
on.

• Strategy; defines the generic interface.

• ConcreteStrategy; provides the implementations of the different strate-
gies. These operate on the data structures in the Context, and can be set
dynamically

Figure 3.8: Stragegy Pattern

Strategy pattern define a family of algorithms, encapsulate each one and make
them interchangeable. Applicability of strategy pattern is depend on two con-
ditions; when many related classes differ only in their behavior or/and the need
of different variants of an algorithm. The benefits of strategy pattern are:

• Provide an alternative to subclassing the Context class to get a variety of
algorithms or behaviors

• Eliminate large conditional statements in implementation code

• Provide a choice of implementation for the same behavior

In the implementation, strategy pattern increase the number of the objects.
Another condition as liability of strategy pattern is that all algorithms must use
the same strategy interface.

39

3 Variability Modeling

State Pattern

State pattern has similar structure with strategy pattern, both pattern are ex-
ample of composition with delegation. The main difference of those both pat-
terns is one of intent; a strategy pattern encapsulates the algorithm while state
pattern encapsulates a state-dependent behavior.

Figure 3.9: State Pattern

As illustrates in figure 3.9, state pattern has the same structure with strategy
pattern; context class, state as interface class and concrete classes:

• Context; as the class that can have a number of internal states, defines
the interface of interest to clients. The request() made on the Context will
be delegated to state.handle().

• State; defines an interface for encapsulating the behavior associated with
a particular state of the Context.

• ConcreteState; handle requests from the Context. Each concrete class
implements a behavior associated with a state of the Context.

The same issue occurs on the implementation of state pattern; result in a greater
number of classes in the design. But on the other hand, state pattern is appli-
cable for design an object’s operations that have large and multiple conditional
statement that depend on the object’s state. Moreover, an object’s that depends
on its state and must change its behavior at runtime depending on that state.
To conclude the state pattern with variability concept, state pattern is used to
design an object that has variant states and its possibility state transition, while
the variants are decided on the runtime by user.

Decorator Pattern

The decorator pattern is also known as wrapper, since it describes a pattern in
which an object can be enclosed by another object, with the enclosing object
controlling input and output. By using this pattern, programmers can dynam-

40

3.3 Modeling variability

ically attach functionalities to an object without modifying its internals. In a
product family system, variants can be described as objects that have different
features. Decorator pattern allow an object to add many features and function-
alities dynamically, especially when the combination of features could not be
predict in design time.

Figure 3.10 depicts the structure of decorator pattern, contains of four main
components as describe below:

• Component; defines the interface for objects that can have responsibilities
added to them dynamically.

• ConcreteComponent; defines an object to which additional responsibilities
can be attached.

• Decorator; maintains a reference to a Component object and defines an
interface that conforms to Component’s interface.

• ConcreteDecorator; adds responsibilities to the component.

Figure 3.10: Decorator Pattern

Decorator pattern provide a flexible alternative to subclassing with combina-
tion of composition and inheritance. Furthermore, the advantages of decorator
pattern will be listed below:

• Add flexibility and extensibility, user gets to decide how many decorators
are applied dynamically and in what order

• Can nest decorators recursively, allowing unlimited added responsibilities

• Elimination of unnecessary inheritance hierarchies, fewer classes than with

41

3 Variability Modeling

static inheritance

As an issue, decorator can result in many small objects in the design and the
overuse object will lead to complexity. Application of decorator pattern is con-
cern on adding responsibility to individual object transparently; encapsulating
responsibility again without affecting other object; and extending classes with-
out explosion of subclasses.

Adapter Pattern (simple decorator)

Adapter pattern also known as wrapper; while decorator wraps a class with
another class to add functionalities, adapter pattern wraps a class with another
class to convert interface of existing class into an interface that is compatible
with an otherwise incompatible client class. Adapter changes the interface of
a class that is being presented, with no new functionality is created in adapter
class. The main purpose of adapter pattern is to make the classes that have
different interface to work together, preserving the reusability of the existing
class.

Figure 3.11: Adapter Pattern

The structure of adapter pattern (figure 3.11):

• Client; client see only the target interface

• Target; as the expected interface

• Adapter; implement the Target interface, adapter is composed with the
Adaptee

• Adaptee; all requests get delegated to the Adaptee

There are two forms of adapter pattern; object and class adapters. Object
adapter is the basic pattern describe in figure 3.11 with using composition to

42

3.3 Modeling variability

adapting the adaptee, while class adapter uses multiple inheritance to subclass
the Target and the Adaptee. The best application of adapter pattern is for
collaboration between classes with incompatible interface. Implementing an
adapter may require little work or a great deal of work depending on the size
and complexity of the target interface.

3.3.3 Preliminary Works

This section will introduce several preliminary works to find the best solution for
modeling entity variability. Start with the understanding of variability notation
in feature modeling, adaptive object model as an alternative that represent all
information as metadata, until finding design pattern as the best mechanism to
model entity variability.

Feature Modeling

Feature model is the most common representation for variability in product
software line and visually represented by means of feature diagrams. Feature
models were first introduced in the Feature-Oriented Design Analysis (FODA
) and since then, a number of extensions have been proposed. As variabil-
ity related, this work starting with understanding about feature model and its
notation that is used generally for variability presentation. Nevertheless, vari-
ability in this master thesis is focus on entity variability, variability that brings
all variation of specifications of one entity not variability of all final products
in a product family. Furthermore, the feature model provides only notation for
modeling variability, thus feature modeling is not a solution that can be used
and modified to propose general structure for entity variability in the MeDIC
system. The purpose of this preliminary work is rather to get the first impressive
about variability in general usage. Later on, the implementation of variability in
this work might have different interpretation with general variability in software
product line engineering application.

Adaptive Object Modeling (AOM)

Flexible and adaptive modeling to handle the specification change of an entity
is the direction of entity variability modeling that is required in this chapter.
Adaptive Object Modeling (AOM) is one of modeling for facing requirement
change within application domain, where the business rules are changing rapidly.
An Adaptive Object Model is an object model that provides ’meta’ information
about the domain so that it can be change at runtime . AOM create an object de-
sign (meta-model) that describes the domain objects which includes attributes,
relationships, and business rules as instances rather than classes. The architec-
tural pattern of AOM was made of many smaller patterns to build very flexible

43

3 Variability Modeling

systems; such as type object, properties, strategy, type-square, and interpreter
pattern. Figure 3.12 shows the common design structure of Adaptive Object
Model with combination of several patterns within.

Figure 3.12: Basic design of Adaptive Object Model

By creating a new description and a new instantiation to satisfy each new
requirement, system became more adaptive with domain changes where the
changes do not require recompiling the system. Furthermore, AOM allows user
to change the business rules in order to extend the system. With the flexibility
provided by AOM, this model might meet requirements of our entity variability
model, to evolve the specification of an entity dynamically. However, AOM has
several disadvantages at implementation point that must be considered before
apply this model to metric meta-model concern with variability issues. Devel-
oping AOM requires skilled human resources, because it is hard to understand
and maintain. The startup cost to develop AOM is expensive; moreover the
model can have poor performance. In order to apply this object model in the
MeDIC system, high effort will be required to rebuild the entire system. Re-
build the entire system in order to model specific variability points in metric
meta-model will require too much effort and cost, therefore this object model is
not an appropriate solution for our case.

State Pattern

Over several existing variability mechanisms, patterns were chosen as a solution
to build general structure for entity variability. Patterns provide reusability to
handle the similar modeling problem, which is an issue to model variability of
an entity in this work. From a set of predefined patterns for variability that are

44

3.3 Modeling variability

described in section 3.3.2, state patterns are the first pattern that we tried to
apply for modeling entity variability of information needs.

Specification process of information needs as a complete entity is following
three steps; from textual description, categorization, until question formulation.
Therefore, the information needs present three states in its life cycle; ’describe’,
’categorized’, and ’formulated’. With variability focused on the state of entity,
using state pattern as the pattern to present the state of an entity seems to be
applicable to modeling entity variability of information needs.

Figure 3.13: State pattern of Information Need

Figure 3.13 shows a result model for the entity variability of ’InformationNeed’
through a mapping of entity variability problem into state pattern structure as
explained in figure 3.9. ’InformationNeed’ represents the Context class as the
state base class that will maintain an instance of three states of information
need entity that defines the current state. ’InformationNeedState ’ associates
’InformationNeed’ and all the concrete states as common interface for encapsu-
lating the behavior of all the concrete states and controlling the state transition.
With implementing the same interface, the states are interchangeable . From
the variation point analysis (3.3.1) of information need entity, process of entity
initiation until the complete entity is formed we have identified three states of
information need; ’Describe’, ’Categorized’, and ’Formulated’. All of the states
are modeled as ConcreteState classes as shown in the figure 3.13. All the states
will handle requests from the ’InformationNeed’. Each ConcreteState provides
its own implementation for a request. In this way, when the ’InformationNeed’
changes the state, its behavior will change as well. For example, when the cur-
rent state ’InformationNeed’ entity change from ’Describe’ to ’Categorized’, the
behavior and property will change as well that will allow the information need
entity to be categorized by associate it with ’Category’ class.

With state pattern applied in the model, information need entity is become
more flexible to be implemented, easier to add new states in the case of the

45

3 Variability Modeling

process to create complete entity, and avoid the inconsistent states. However,
some withdraws of state pattern have to be observed. Class explosion might
occur from the ConcreteState classes. Although in information need entity all
the states have been determined into three states, process to identify complete
entity might develop and need the increment of other states. In the other case,
another entity might have numerous states to identify a complete entity, and
every state will one class, which is ConcreteState class to be model in the struc-
ture. Variability modeled by state pattern is focused only on the state of entity,
while the metric entities exist in the MeDIC system are various. The other
core entity in MeDIC system that is closely related with variability is ’measure’
entity. Variability in ’measure’ entity occurs as varying types of the evolved en-
tity. ’Measure ’ entity is identified from an textual description and later on will
develop into ’base’ or ’derived’ metric based on measurement approach chosen
for every metric. State pattern as variability mechanism barely apply to model
variability in measure entity. Therefore, state pattern could not be applied to
proposed general variability modeling in the MeDIC system. In the next section,
another variability pattern from a set of predefined pattern (3.3.2) is proposed
as a solution to model both core entities in the MeDIC system.

From several preliminary works presented, we hope that next researches that
are dealing with variability, especially in modeling entity variability might get a
picture on how and why the solution variability is proposed in this work. Vari-
ability is an extensive topic applied in current industrial. Many researches have
been published to work through variability in various perspective and purpose.
We hope that this work will render another research of modeling variability in
software engineering.

3.3.4 Applied variability solution pattern for each variation point

Variability solution pattern proposed to model the variability in the MeDIC
system is adopted from decorator pattern, one of predefined pattern that are
explained in section 3.3.2. A concept or model that we are looking for to model
variability in the metric system is a model that can flexibly present the metric
as the reality. The user can propose and refined the metric dynamically. This
concept is still difficult to be modeled. However, the proposed model from deco-
rator pattern can reflect the current need in our system. Decorator pattern allow
an object to add many features and function dynamically, especially when the
combination of features could not be predicted in design time. As we mapping
to our core metric entity, decorator pattern can represent the variability.

In this section, decorator pattern will be applied to model variability for both
core entities of metric on the MeDIC system: Information Need and Measure
entity. Compare with state pattern explained in the previous section, decorator
pattern provides more flexibility with various decorators and dynamic order/se-
quence to attach the decorator. The term of decorator in this section will refer
to additional specification of an entity as result of entity refinement process to

46

3.3 Modeling variability

attain the complete form of the entity itself, such as functionalities, properties,
attributes, etc. For example, the decorators of Information Need entity are the
category and question formulation as the additional properties, include all func-
tions attached. Those decorators of Information Need entity are attached later
on to specify the entity to be more detail and measureable.

Information Need Variation Point
The main structure of decorator pattern is divided into two parts, the concrete
component and the decorators. Concrete component is the main component
of the entity, that will be exist in all possible variant of the entity, whereas
the decorators are the components that causing the variation between entities.
The variation can be the different type of decorators that are attached to the
entity or the amount of decorators for each entity. For Information Need entity,
the concrete component is the initiate form of the entity which is the abstract
textual description. All variations of information need entity are started from
the same initiation form, and later on will evolve to different form. On the
MeDIC system, almost all of the entities, especially those that have variability,
are started with textual description, therefore, it can be assumed that concrete
component in decorator structure of all entities on the MeDIC system is the
initiate form of the entity itself.

Figure 3.14: Decorator pattern of Information Need

Figure 3.14 presents the mapping result of decorator pattern to Information
Need entity. Component class as the interface is represented by the entity it-
self, ’InfoNeedComponent’ class and concrete component class is represented by
’DescriptionComponent’ class. All of the information need entity object created
will include ’DescriptionComponent’ as the first component for the entity, to
describe initiation of information need in textual description. All classes that
are derived from ’InfoNeedDecorator’ abstract class are the decorators, those
decorators will wrap the initiate entity object with new component and refined
the entity. There are two decorator classes for information need entity; Dec-

47

3 Variability Modeling

orator_Category and Decorator_Question. Decorator_Category is a class to
reflect categorization of Information Need, while Decorator_Question is a class
to describe the formulation of Information Need’s question.

The structure of decorator pattern provides flexibility to add more property that
can reflect the variability of the entity. Entity variability in this thesis is focus
on varying degree of specification that is represented by different properties and
functions in different state of entity specification. The decorator attached to
entity will change the specification dynamically.

Measurement Variation Point

Differ from Information Need entity, Measure entity is barely modelled with
state pattern. State pattern is focused on the state of an entity, but the vari-
ability of Measure entity is a variation point of different type of the evolved
entity. The state could not be reflected well, moreover, all the evolved types of
Measure entity are started with the same initiate form. When the user proposes
the measure, the first entity is specified as a textual form to describe the mea-
surement of the entity. The type of the entity in an initiation stage could not be
known until the next specification step is committed; to specify the entity with
a measurement approach. Later on, the measurement approach can be specified
again with related Measure entity that is used in the measurement approach.

Figure 3.15: Decorator pattern of Measure

The figure 3.15 illustrates the structure of Measure entity with nested decorator

48

3.4 Variability mechanism (solution pattern)

pattern applied on it. MeasureComponent class is the interface of the compo-
nent. MeasureDescription class present the initiate form of the entity as the
concrete component class in decorator pattern structure. Decorators of Mea-
sureComponent are Decorator_Function and Decorator_Method class. Both of
the decorators are measurement approach that is used to specify the Measure
entity and determine the type of the entity. If the method approach is attached
to the entity the type of Measure entity will be called as base metric, while en-
tity with function measurement approach will be addressed with derived metric
(because the value is derived from other entity’s value as an calculation result).
Method approach is a plain measurement description to explain how to get the
value of the entity. While function approach is a functional statement that in-
volved another Measure entity value as the source of the calculation. Therefore,
the function decorator in Decorator_Function class can be decorated more with
FunctionDescription and Decorator_UsedMeasure to specify the function itself
and Measure used in the function. For this purpose, nested decorator is applied
to the Measure entity model.

3.4 Variability mechanism (solution pattern)

In the previous section pattern has been discussed, especially for state and dec-
orator pattern for modelling variability of core metric entities. Pattern in this
thesis refers to variability mechanism, chosen from several variability mecha-
nisms (2.2.3.), that is proposed to enhance MeDIC meta-model. From two core
entities in the MeDIC system, decorator pattern are prove to be able to model
the variability, and in this section the general solution pattern based on deco-
rator pattern to model entity variability will be presented.

Figure 3.16 shows the general solution pattern for entity variability. Mapping
from decorator pattern structure, Entity defines the interface for each entity.
DescriptionComponent is the concrete component for each entity in abstract
textual description form; the object that will be initiated first and extends the
Entity. New property/component will be added dynamically to the Description-
Component to specify the entity. All decorators present component to specify
the entity, with new state, new component that will wrap the entity, or new
behaviour. The decorators are derived from EntityDecorator class that imple-
ments the same interface with Entity. The decorators can add new method or
extend the state of the entity, and each decorator has an instance variable for
the entity it decorates. Those decorators that are used to wrap the entity will
change the specification degree of the entity and cause the variability between
entities. The structure can be nested to model a decorator component that can
be decorated more with another decorator, as showed in the Measure entity
model in section 3.3.4.

This solution pattern is mainly aimed for modelling variability of an entity in the

49

3 Variability Modeling

Figure 3.16: Solution pattern for entity variability

MeDIC system. Metric’s entities in the MeDIC system are specified over several
process steps and each step will result a variant of the entity. Moreover, the
same process step might create different variant from different decorator applied
to entity or different amount of the decorators. Therefore, specific model need
to be present to cover this specific purpose.

50

	Variability Modeling
	Tasks
	Variability in MeDIC system
	Variability of Entity Specification
	Analyze Variation Points in the MeDIC system

	Modeling variability
	Determine all variants for each variation point
	A Set of Predefined Pattern
	Preliminary Works
	Applied variability solution pattern for each variation point

	Variability mechanism (solution pattern)

