
2. Foundations

Contents
2.1. Enterprise JavaBeans . 3
2.2. JavaServer Faces . 5
2.3. Gargoyle-Codegenerator . 10
2.4. Metrics . 13
2.5. Dashboard . 15

2.1. Enterprise JavaBeans

The Enterprise JavaBeans (EJB) technology is a standardized framework for the
development of multi-layered software systems. It encapsulates business logic
and provides services like security handling, transaction management, persis-
tence, networking, resource management or concurrency handling [20]. The EJB
architecture is based on server-side components for application development,
which are called enterprise beans. Enterprise Beans differ in their functionality
from JavaBeans. In contrast to JavaBeans, enterprise beans are components,
which manage objects for distributed applications, that are located on various
machines with many clients [27].

The EJB technology implements the so called “three tier architecture”, where
the business logic with its services and the client applications are separated. The
three tier concept guarantees performance, scalability and flexibility of systems
during the access of the back-end resources like databases, if the amount of
clients is big [27].

The EJB framework is a Java Enterprise Edition (Java EE) runtime environ-
ment, where the EJB container runs. The EJB container is a software, which
consists of EJB components (enterprise beans). It manages all interactions
of the EJB components during their runtime as well as their lifecycle. This
takeover of the control of business logic managed by the EJB container is called
Inversion of Control and was defined by Rod Johnson [21], [5]. Due to the ap-
proach of Inversion of Control, the EJB application developer does not need to
care about transaction and security management. As a consequence, creation
and maintenance of EJB applications becomes less complex. The EJB program-
ming API includes a set of protocols (agreements) between the EJB container
and the EJB components, interfaces and classes in order to enable platform

3

2. Foundations

independency, portability and a large number of functions for the development
of business applications.

As mentioned above, the component architecture forms the basis of the EJB
technology. Each EJB container includes a pool of EJB instances and is re-
sponsible for their monitoring, performing as well as for the lifecycle of EJB
instances in compliance with contract rules established in the EJB protocols.
The lifecycle management process includes the creation and destruction of the
EJB instances [15], [27]. There are three types of the EJB components:

• A Persistent Entity represents a table in a database, where an entity
instance is a row in this table. Persistent Entities are the real domain
objects, which are represented by Plain Old Java Objects (POJOs). The
persistence approach of EJB 3 defines a reworked Java persistence API
(JPA), whose implementation is realized by the persistence provider. The
persistence provider enables the availability of the entity manager. The
persistent entities can be considered as “a high-performance data cache”
[18], where the entity manager arranges for the loading, saving and up-
dating of the persistent entities. Additionally, the Entity Manager is re-
sponsible for the search of persistent entities, which can be performed by
using the Java Persistence Query Language.

• A Session Bean is in contrast to the entity bean a non-persistent ele-
ment of the EJB components and is used to map business processes and
the interactions between business objects. Session beans are divided into
stateful session beans and stateless session beans. Stateful session beans
hold the information state of each client. They are used to perform tasks
where many interaction steps (methods) for one client are needed. Thus,
the corresponding session object has to store the state of the one client
during many method calls. The stateless beans are connected to the client
for single method calls. In this case each method invocation is indepen-
dent of the stored resources of the previous method. Therefore no client
state information can be stored in a stateless session object [18], [2].

• Message-Driven Beans are used for asynchron communication between
the client and the server by using the Java Messaging Service, where
the client is the message sender and the server is the message receiver.
Message-driven beans are not called by the client directly. The client
sends its request to the messaging service. Message-driven beans do not
have an individual state or unique identifier of the client and have a similar
lifecycle like stateless session beans [29].

Figure 2.1 illustrates the EJB architecture, where the client and the EJB con-
tainer running on the server side are separated. A single EJB server can include
many EJB containers with various types of EJBs. The remote client represents
either a servlet, a mobile device, a stand-alone Java application or another en-
terprise bean [29]. As shown in 2.1, the client does not communicate to the bean

4

2.2. JavaServer Faces

of the EJB container directly. Instead of that it calls the EJB object through
the business interface. The EJB object then invokes either an enterprise bean
or a service. The invocation of an enterprise bean is also realized by using an
interface. This concept of the EJB architecture ensures automatic persistence,
transaction and security for the bean.

Figure 2.1.: EJB Architecture.

Another task of the EJB container is to provide the required resources for EJB
instances. The communication between bean and EJB container can be per-
formed either via callback methods, the EJBContext or the Java Naming and
Directory Interface (JNDI). Callback methods are implemented by each bean
and used to notify the bean, which took part in the particular lifecycle event.
The disadvantage of this mechanism is, that the beans are forced to implement
all callback methods even if only one of them is used.

An EJB container provides the service of resource management via the Enter-
prise Naming Context (ENC). The ENC registers a references of the resources
and allocates a unique Name for each registered resource. The access to this
names can be gained by using the JNDI-lookup mechanism [18]. Using the
EJBContext object the bean can obtain the information of its environment or
transaction status [27].

2.2. JavaServer Faces

The expansion of the World Wide Web increases the demands for modern web
development tools. As a consequence, in the last ten years many web application
frameworks have been produced. One of the first attempts to develop Java-based
technology for Web applications were the Servlet API and the later emerged

5

