
2.2. JavaServer Faces

of the EJB container directly. Instead of that it calls the EJB object through
the business interface. The EJB object then invokes either an enterprise bean
or a service. The invocation of an enterprise bean is also realized by using an
interface. This concept of the EJB architecture ensures automatic persistence,
transaction and security for the bean.

Figure 2.1.: EJB Architecture.

Another task of the EJB container is to provide the required resources for EJB
instances. The communication between bean and EJB container can be per-
formed either via callback methods, the EJBContext or the Java Naming and
Directory Interface (JNDI). Callback methods are implemented by each bean
and used to notify the bean, which took part in the particular lifecycle event.
The disadvantage of this mechanism is, that the beans are forced to implement
all callback methods even if only one of them is used.

An EJB container provides the service of resource management via the Enter-
prise Naming Context (ENC). The ENC registers a references of the resources
and allocates a unique Name for each registered resource. The access to this
names can be gained by using the JNDI-lookup mechanism [18]. Using the
EJBContext object the bean can obtain the information of its environment or
transaction status [27].

2.2. JavaServer Faces

The expansion of the World Wide Web increases the demands for modern web
development tools. As a consequence, in the last ten years many web application
frameworks have been produced. One of the first attempts to develop Java-based
technology for Web applications were the Servlet API and the later emerged

5



2. Foundations

JavaServer Pages (JSP). Both approaches initiated significant improvements in
the wold of Web application frameworks and revolutionized web technologies.
They provided an object-oriented design and platform independency. Further
advancements of JSP are the page-based generation of dynamic HTML code
and the support to edit HTML pages using JSP tags [5].

However, the servlet API as well as JSP do not provide easy management of
Java code due to the absence of a component-based architecture. Thanks to the
component-based architecture, the work with JSF components becomes very
convenient.

In order to improve usability, the JSF technology provides a “component-centric
and client-independent development approach” [5] and enables easy management
of application data. The JavaServer Faces framework simplifies the develop-
ment process of user interfaces and offers effective solutions for the develop-
ment and maintenance. It also offers different component libraries and inter-
changeable and extensible framework components like templates and composite-
components [26]. JSF extends the Model View Controller (MVC) approach with
a component-based user interface and combines the best practices of the tech-
nologies described above. The components of JSF are divided into two groups:
visual (user interface components) and non-visual. Both JSF component types
interact with each other. Visual components serve as a representation for data
content. Non-visual components are used for tasks like validation or conversion
and therefore provide the possibility of running visual components in the JSF
environment.

The term “user interface component” (UIComponent) in JSF denotes a “self-
contained” [5] re-usable element for the development of JSF applications. A
completed JSF application is a composition of various UIComponents, which
includes input text fields, buttons, data grids, etc. UIComponents of a JSF
page are combined in form of a component tree or so-called view, whose root is
represented by the UIViewRoot component.

2.2.1. JavaServer Faces Standard Request-Response Life Cycle

The lifecycle of a JSF application begins with the HTTP request initiated by
the client. A HTTP request can be either an initial request or a postback
request. If the HTTP request is performed for the first time, it is an initial
request. Postback request means that the client submits the form of a rendered
page during the initial request. The lifecycle itself consists of two main phases:
execution and rendering. The execution phase starts with restoring the view as
shown in figure 2.2. In the process of the restore view phase the view will be
created, the lifecycle events will be handled and the view will be stored in a
FacesContext instance. If the request is initial, an empty view will be created in
the restore view phase and then the final render response phase will be executed
only. The result of the response of an initial request can be, for instance, another

6



2.2. JavaServer Faces

JSF page.

Figure 2.2.: JavaServer Faces Standard Request-Response Life Cycle.

The Response Complete arrows in figure 2.2 redirect the process execution to
another resource or web application and therefore cancel the lifecycle process.

If the request is the postback, the view is already created and must be restored
during the view restore phase according to the state information of the page.
The approach applied to the reconstruction of the page state using Facelets is
called partial-state-saving. According to this approach, at first, the new view
will be built and then the saved page state will be processed. As a consequence,
the size of the page state decreases.

The next sub-phase of the execution phase is the Apply Request Values phase.
In this sub-phase all components will be processed and the values, given by the
user, will be locally assigned to each component. In the next sub-phase the value
data is validated and converted before the corresponding value is written in the
data model. It is possible for the JSF developer to interfere in the JSF lifecycle
management by setting the immediate attribute of a component to true. In this
case the validation and conversion of the component value will be performed in
the apply request phase directly. As a result of the successful completed apply
request phase, the new values for each component will be allocated and the
lifecycle events will be processed (see fig. 2.2).

In the process validation sub-phase the local allocated and decoded input val-

7



2. Foundations

ues will be converted to the required form and validated. If the conversion or
validation process fails the JSF lifecycle manager adds an error message to the
FacesContext instance and starts the render response phase to immediately ren-
der the page with an error message. Else the correctly validated local values of
components are stored in the server-side object properties now.

If the validation phase was completed without errors, the saved local values are
applied to the model in the update model values phase. After the model was
updated the application logic is executed in the invoke application phase. This
phase deals with the handling of special application events, which are defined
by the attributes action or actionListener of an UIComponent.

As shown in figure 2.2, lifecycle process events are executed after each of the
described phases. Here, the transition to the next phase can be aborted, if an
error occurs. The lifecycle will either go to the final render response phase or, if
the application should be redirected to a certain Web application resources, the
response has to be completed (see the Response Complete arrow in fig. 2.2).

The render response phase finishes the lifecycle of a JSF application. During this
phase, the component tree will be saved and rendered by using the individual
rendering classes of the components.

2.2.2. Features and Components of JSF 2.0

JSF in version 2.0 includes a lot of design features, that are implemented ac-
cording to experience and suggestions from developers of JSF 1.0. Some of them
are listed below:

• System events. System events enable to react and manage lifecycle
events. Event handling is an essential function of the JSF technology. An
event object recognizes the component, which initiated the event and saves
the event information. Whenever an event is fired by the user, JSF invokes
the registered listeners for the event processing. There are three types of
events in JSF: value-change-events for the handling of input component
value changes, action-events to handle the control component (buttons
and hyperlinks) activations and phase-events, which are triggered by the
system for the lifecycle processing (the blue boxes in figure 2.2).

• Standardization of Facelets. Facelets build a Web template system
represented in JSF 2.0 in form of the View Declaration Language (VDL)
for the implementation of reusable page components. Basically, Facelets
are constructed as a composition structure, which is represented in JSF by
UIComponents [20]. Technically this means, that the developer declares
one template, which is a simple xhtml file. This templates can then be
referred to by other pages. Pages that implement a template are called
template clients. A template client should fill in the non-replaceable

8



2.2. JavaServer Faces

components defined in the template. A page that implements another
template, can include its own content, which is defined in the template as
replaceable. Facelets also offer the possibility to implement multi-layered
hierarchical templates, where the template hierarchy can have an arbitrary
depth. The hierarchical templating is used for applications, whose pages
have a common layout, while each page has its own page content.

• Managed beans. Managed beans are important POJO-based compo-
nents of JSF for the storage of application data. This architecture of JSF
ensures stability and maintainability of the system due to a separation of
the view from the domain model [5]. Managed beans implement proper-
ties associated with UI components. The object methods and attributes,
that are contained in a managed bean, can be accessed via a user-friendly
expression language.

A Java class that represents a managed bean must be registered using
the annotation @ManagedBean and has to include a public constructor
without parameters. JSF instantiates the managed bean object auto-
matically via the Managed Bean Creation Facility after the first access
to the managed bean class. The newly created managed bean instance
is stored during a certain scope defined by one of the following annota-
tions: @None-Scoped, @Request-Scoped, @View-Scoped, @Session-Scoped
or @Application-Scoped. The Scope defines the duration due to the man-
aged bean object is available. The @Request-Scoped has a short duration
and provides availability during a single HTTP request, while a managed
bean registered by @Application-Scoped (the longest scope) exists during
the entire lifetime of the application. @None-Scoped means that the man-
aged bean object will not be stored and instantiated “on demand” by other
managed beans. A managed bean object registered by none scope exists
as long as the bean exists, that called it. Note, that managed beans can
reference other managed beans with either none scope, an equal scope or
with a greater scope.

JSF 2.0 defines a new additional scope called @CustomScoped. If the JSF
developer registers a managed bean using the custom scope, he is able
to monitor its lifecycle. The custom scope has a longer lifetime than the
request scope, but a shorter lifetime than the session scope. The custom
scope lifetime lasts as long as the runtime of the faces lifecycle during each
request. In this case the managed bean instance will be stored in a map
variable of the type java.util.Map [5].

The costs for the accessibility of a managed bean instance are equivalent to
the corresponding scope. This means that the request and session scopes
are the most expensive regarding to the memory consumption and can
easily cause errors that are difficult to debug [26].

• Ajax Integration. Ajax is the short form for Asynchronous JavaScript

9



2. Foundations

and XML, which represents a technique that combines JavaScript, the
Document Object Model (DOM) and the XMLHttpRequest approach in
order to make Web applications more dynamic and responding. Ajax en-
ables to perform asynchronous partial updates of web page components
using Ajax engines. If the user initiates an action on a page, he does not
communicate with a server through a HTTP request. He interacts with
the Ajax engine per JavaScript instead, which processes all operations,
which resulted from the interaction of user with the web application. If
an operation does not need a connection to the server, the Ajax engine
handles it by itself. For operations that require a client-server communi-
cation, the Ajax engine directly connects to the server. Therefor, it sends
an asynchronous request to the server, so the user interface does not have
to be reloaded as a whole [13].

JSF 2.0 provides Ajax functionality in form of the build-in resource li-
brary, which can be applied to UI components using the <f:ajax> tag to
enable Ajax requests. As a result, only the UI components including the
<f:ajax> tag will be submitted, validated and rendered without perform-
ing all lifecycle phases for the whole view [20].

A further possibility to apply the Ajax functionality to a particular UI
component is to use the update attribute. The value of the update attribute
contains the ID of the UI component, which has to be updated.

2.3. Gargoyle-Codegenerator

In the implementation part of this bachelor thesis the Gargoyle Codegenerator
was used to automatically generate basic building blocks of the business logic
(EJB source code). The process also included the generation of JSF visual-
ization source code that consists of managed beans and XHTML-pages. The
target architecture of the Gargoyle Codegenerator is based on an architecture
developed at the LuFGi3 at RWTH Aachen, which is shown in figure 2.3. The
architecture is divided into three layers: the client layer, the business layer and
the data layer. The client layer represents the user interface, implemented by
JavaServer Faces. Methods of the managed bean classes access an application
facade in the business layer, which implements the EJB technology. The appli-
cation facade calls the methods of the CRUD (Create, Retrieve, Update, Delete)
classes and includes the corresponding methods for creating, retrieving, updat-
ing and deleting of application objects. The application facade and the CRUD
Controller implement the business functionality of the whole application [31].

In order to access the persistence layer the methods of the CRUD classes call
DAOs. DAO is an abbreviation for data abstraction objects, which represent
abstract objects of the data layer. The domain model describes the business
objects of the application, which is realized through the DAO methods and the

10


