
2. Foundations

and XML, which represents a technique that combines JavaScript, the
Document Object Model (DOM) and the XMLHttpRequest approach in
order to make Web applications more dynamic and responding. Ajax en-
ables to perform asynchronous partial updates of web page components
using Ajax engines. If the user initiates an action on a page, he does not
communicate with a server through a HTTP request. He interacts with
the Ajax engine per JavaScript instead, which processes all operations,
which resulted from the interaction of user with the web application. If
an operation does not need a connection to the server, the Ajax engine
handles it by itself. For operations that require a client-server communi-
cation, the Ajax engine directly connects to the server. Therefor, it sends
an asynchronous request to the server, so the user interface does not have
to be reloaded as a whole [13].

JSF 2.0 provides Ajax functionality in form of the build-in resource li-
brary, which can be applied to UI components using the <f:ajax> tag to
enable Ajax requests. As a result, only the UI components including the
<f:ajax> tag will be submitted, validated and rendered without perform-
ing all lifecycle phases for the whole view [20].

A further possibility to apply the Ajax functionality to a particular UI
component is to use the update attribute. The value of the update attribute
contains the ID of the UI component, which has to be updated.

2.3. Gargoyle-Codegenerator

In the implementation part of this bachelor thesis the Gargoyle Codegenerator
was used to automatically generate basic building blocks of the business logic
(EJB source code). The process also included the generation of JSF visual-
ization source code that consists of managed beans and XHTML-pages. The
target architecture of the Gargoyle Codegenerator is based on an architecture
developed at the LuFGi3 at RWTH Aachen, which is shown in figure 2.3. The
architecture is divided into three layers: the client layer, the business layer and
the data layer. The client layer represents the user interface, implemented by
JavaServer Faces. Methods of the managed bean classes access an application
facade in the business layer, which implements the EJB technology. The appli-
cation facade calls the methods of the CRUD (Create, Retrieve, Update, Delete)
classes and includes the corresponding methods for creating, retrieving, updat-
ing and deleting of application objects. The application facade and the CRUD
Controller implement the business functionality of the whole application [31].

In order to access the persistence layer the methods of the CRUD classes call
DAOs. DAO is an abbreviation for data abstraction objects, which represent
abstract objects of the data layer. The domain model describes the business
objects of the application, which is realized through the DAO methods and the

10



2.3. Gargoyle-Codegenerator

Figure 2.3.: The Target Architecture of the Gargoyle Codegenerator.

entity manager.

The architecture of the Gargoyle Codegenerator itself is designed as illustrated
in figure 2.4. Its implementation structure allows the user to control each gener-
ation step by using several transformation models. As shown in figure 2.4, there
are six model transformation steps, which consecutively generate components
of the target application architecture. The transformation process includes two
types of transformations, the Model-to-Model transformation and the Model-to-
Text transformation. In figure 2.4 the Model-to-Model transformation is repre-
sented by the straight arrows and the Model-to-Text transformation is indicated
by the dashed arrows [31], [24].

The code generation needs an UML model as input data. The UML model will
be imported, which is denoted by the red dashed arrow. From the UML model a
generator model is created, which defines entities of the domain model and their
relationships. In the generator model particular information for the generator
are added.

The entity model is created from the generator model by using the Model-to-
Model transformation. The entity model is a preparation step for the generation
of the domain model classes and the JPA. Therefor the entity model extends the
classes of the generation model by ID attributes and database named queries
needed by JPA annotations. The creation of the domain model source code
from the entity model is performed by using a Model-to-Text transformation.

The entity model is also a start model for the EJB - Generator model, that

11



2. Foundations

Figure 2.4.: The Gargoyle Codegenerator Architecture.

defines the CRUD components and methods. From the EJB - Generator model
the EJB model is created, which includes the essential elements for the business
logic implementation: DAO, the CRUD Controller and the CRUD Facade. The
CRUD Controller and Facade implement the methods which specify the func-
tionality of the application, while the DAO classes provide methods to access
the database. When the methods of the EJB model are adjusted and edited,
the source code for the business logic can be generated.

The generation of the JSF code will be executed in two steps. As shown in fig-
ure 2.4, the first step is performed by using the visualization generator model.
Here a connection to the Facade, the specification of methods to access the Fa-
cade and the page relationships are defined. The visualization generator model
is the basis for the JSF visualization model obtained by another Model-to-Model
transformation. In the JSF visualization model, the managed bean classes and

12



2.4. Metrics

the JSF template pages (Facelets) are described. In the last step the JSF source
code for the managed beans and the Facelets is generated [9], [24].

2.4. Metrics

As defined in the title, the main task of this bachelor thesis deals with the
extension of a dashboard functionality. A project dashboard can be defined as a
tool for the visualization of different project metrics (see section 2.5). Therefor
metrics are an important basis of this bachelor thesis.

The term ‘metric’ is intuitively related to the terms ‘measure’ or ‘measurement.’
Hence, the term ‘metric’ is often explained in literature by using the terms ‘mea-
sure’ or ‘measurement’ and vice versa [30]. However, measurement is defined in
ISO/IEC 15939 as a “set of operations having the object of determining a value
of a measure.” [19] The IEEE defines the term ‘metric’ as “a quantitative mea-
sure of the degree to which a system, component, or process possesses a given
attribute.” [17] Hence, a metric is a mapping of a measured property to a scalar
or vectorial scale [25], while a measurement is simply a value.

Metrics are an objective assessment of an artifact and determine the quantitative
characteristics of an artifact. This means, that the artifact characteristics are
mapped to a numeric value or a vector of numeric values. Different artifacts
have a different degree of structuring. It is more difficult to represent poorly
structured artifacts in a metric than the well-formalized artifacts [3].

Referring to project development, metrics are “objectively measurable attributes”
[8] used to provide information about the project state. In the management area
metrics are important “decision-support tools” [10] used to validate, control and
report collected data. They help to find an effective and efficient direction of
the development and organization process and make it more predictable.

Software Metrics

In software engineering the term ‘metric’ is extended by the term ‘software met-
ric’ and uses to determine quality properties of software system and the software
development process during its lifecycle. Software metrics help to estimate the
required quality properties like maintainability, efficiency, flexibility, portability
etc. as well as software development costs, project scheduling or risk register
[8].

In [25] an ‘ideal’ metric is defined as a metric, which provides an accurate char-
acterization of a measured software object, restricted to the measured property.
The authors define seven main requirements for the software metrics: differen-
tiability, comparability, reproducibility, availability, relevance, profitability and
plausibility. They also present the following categorization of the software met-
rics, which are classified according to their application area.

13


