
5. Realization

Contents
5.1. GUI and Concept . 25
5.2. Architecture . 33
5.3. Implementation and Experiences 37

5.1. GUI and Concept

The concept, presented in this chapter, is built on the requirements that were
described in section 4.2 and 4.3. According to the requirements, a web applica-
tion should be designed, which can be integrated into the Project Management
Cockpit and is developed for inexperienced users. The tool should provide a
rule-based generation of dashboard templates, which help to compose the dash-
board. Hence, the resulting dashboard should include all essential information,
that are needed to cover the user’s information needs and it should help to
interpret the visualization of the data.

Within this bachelor thesis a dashboard template consists of a set of Information
Need-Dashboard Item pairs. Those pairs are arranged according to different
dimensions and dimension characteristics selected by the user.

The relationships of the dimensions, the information needs and the dashboard
items are defined by initialization rules. The approach presented in this bachelor
thesis allows to generate those rules. In section 4.1 the dashboard template ex-
pert is mentioned, who possesses all necessary knowledge about metrics, metric
visualizations, different information needs and their relationships. On the basis
of this knowledge, the dashboard template expert composes the initialization
rules, where one or more Information Need-Dashboard Item pairs are assigned
to different combinations of dimensions and their characteristics.

The statechart diagram in figure 5.1 illustrates the creation process of template
initialization rules. As shown in figure 5.1, the activation of the stimulus cre-
ateTemplate() initiates the transition from the state Start to the state New
Template. The stimulus corresponds to the activation of the button Create
New Template. After a dashboard template has been created, all existing di-
mensions and a characteristic from the characteristics list of each dimension
will be assigned to the new template automatically. This is represented by the

25

5. Realization

Figure 5.1.: Statechart Diagram of Creation of a Dashboard Template and Ini-
tialization Rules.

postcondition of the transition. In the state New Template dimensions and
characteristics can be unassigned and assigned. It is possible to unassign all di-
mensions at once (see the transition with the stimulus unassignAllDimensions()
in fig. 5.1) or a particular dimension (see the transition with the stimulus
unassignDimension() in fig. 5.1) from the created template. If a dimension is
unassigned, all its characteristics should also be unassigned. This is represented
by the corresponding postcondition.

The creation of a new Information Need-Dashboard Item pair is represented
by the stimulus createNewNeedItemPair(). This stimulus starts the transition
from the New Template state to the Need and Item in List state. If a
new pair is created, an arbitrary existing information need and a dashboard
item will be assigned to the new template automatically (see the postcondition
of the stimulus createNewNeedItemPair() in fig. 5.1). The user can change the
value of the information need and dashboard item, which is demonstrated by the

26

5.1. GUI and Concept

stimuli assignInformationNeed() and assignDashboardItem(). If the new object
of an element of the pair is assigned, the old object will be unassigned, which
is represented by the postconditions of the corresponding transitions.

Figure 5.2 shows the graphical user interface (GUI) software prototype for the
dashboard template list. Each dashboard template list includes a column Tem-
plate Name containing template names, a column Edit Template containing
a link to the edit page of the corresponding template and the column Delete,
which contains the command link to delete the corresponding template. A new
dashboard template can be created by activating the button Create New Dash-
board Template. In this case, a pop-up dialog appears (see fig. 5.3), where a
new template name can be inserted and a new row in the dashboard template
table will be created.

Figure 5.2.: A Dashboard Template List in the Software Prototype.

Figure 5.3.: Software Prototype: The Pop-Up Dialog for the Creation of a new
Template.

The sequence diagram in figure 5.4 illustrates the method invocations after the
button Create New Dashboard Template in the dialog from figure 5.3 has been
activated. A click on the button initiates a HTTP request, which starts the
life cycle of JSF. As described in section 2.2.1, the managed bean properties,
that are bound to UI components values, are updated in the Update Model
Views phase. This action is represented in figure 5.4 by the arrow denoted with
the method managedBean.setTemplateName(). The new template name is read

27

5. Realization

Figure 5.4.: Sequence Diagram of Method Invocations in the System during
HTTP Request initiated by Activation of the Button Create New
Dashboard Template.

from the input field of the dialog (see fig. 5.3) and written in the corresponding
property templateName of the managed bean.

In the Invoke Application phase of the JSF life cycle, the business application
logic is executed. As a consequence, the methods that are bound to UI compo-
nents, like action or actionListener, are called. For the creation of a dashboard
template, the method createTemplate() of the managed bean is invoked. The
managed bean delegates the creation operation to the EJB container by calling
the method createTemplate(templateName) (see fig. 5.4). The template name is
read from the corresponding property of the managed bean, which was updated
in the previous life cycle phase. The EJB container then delegates the creation
operation to the Entity Manager, which records the new template in the data
base.

The dashed arrows in the sequence diagram denote, that the creation action
was successful. Otherwise, if the template creation is failed, system exceptions
are invoked. As shown in figure 5.4, in the last step of the creation action, the
current view state of the application is rendered to the browser and the new
row in the templates table appears.

28

5.1. GUI and Concept

Figure 5.5.: The Dashboard Template Edit Page in the Software Prototype.

Through the activation of the link Delete, a row can be deleted from the tem-
plates table. In order to edit a template, the link Edit should be clicked on
in the corresponding row. In this case a new edit page will be load. Figure
5.5 illustrates the software prototype for a dashboard template edit page. The
template name can be edited by using an input box. The edited name can be
saved by clicking on the button Update Template Name. The dimensions can
be selected or disabled by activating the button Ignore resp. Unignore.

On the Items panel, the Information Need-Dashboard Item pairs are created. In
order to create a new pair, the button New Row should be clicked on. In the
combo box of the new row a question (information need) and an appropriate
answer (dashboard item) can be selected. If an answer in the combo box is
selected, a mini image of the corresponding dashboard item appears.

The links Back to Dimensions List, Back to Information Need List and Back to
Dashboard Item List navigate the application to the lists of dimensions, infor-
mation needs and dashboard items respectively, which are then visualized in a
table, as shown in figure 5.2.

Figure 5.6 shows the software prototype of the dimension edit page. On the
panel Dimension the dimension name and a widget for the selection form of
the dimension characteristics can be chosen. After a click on the button Update
Dimension the corresponding changes will be applied. On the panel Character-

29

5. Realization

Figure 5.6.: The Dimension Edit Page in the Software Prototype.

istics, new characteristic values can be added or deleted (see fig. 5.6).

After a dashboard template and the corresponding template rules are created,
this template can be used to initialize dashboards according to its rules.

For users that do not have any experience with operating with Project Manage-
ment Cockpits, it may be difficult to formulate the information needs precisely
and select the appropriate metrics to measure the information data. By using
the dashboard setup support, the user simply needs to specify the dimensions
(for instance, experience with the Project Management Cockpit) with appropri-
ate characteristics. According to the selected dimensions, the system applies the
initialization rules. If the rules for the selected dimensions and characteristics
are defined, the system returns the corresponding question-answer (Information
Need-Dashboard Item) pairs.

It can also be helpful for an experienced user to have a look at the possibilities
how to compose different dashboards for her information needs.

Figure 5.7 illustrates the starting point of dashboard creation, where a dash-
board template is generated by using the initialization rules. The user has two

30

5.1. GUI and Concept

Figure 5.7.: The Setup Page of the Project Management Cockpit in the Software
Prototype.

options to create a dashboard template. The first option is to select a dashboard
template name from the combo box located at the top of the page. In this case
the system returns the corresponding affected dimensions with characteristics
at the top of the page (see fig. 5.8) and the Information Need-Dashboard Item
pairs at the right-hand side of the setup page (see fig. 5.9)

Figure 5.8.: The first Option: Selection of Dashboard Template in the Combo
Box of the Setup Page.

With the second option, the user selects the appropriate characteristics of the

31

5. Realization

Figure 5.9.: The first Option: the returned Information Need-Dashboard Item
pairs.

dimensions, which are visualized as a table in the left hand side of the page
(see fig. 5.10). If a dimension should be ignored, the user selects the item No
Selection of the radio button in the corresponding characteristics cell. If the
button Apply Dimensions is activated, the system returns the affected template
names(see fig. 5.11) and the Information Need-Dashboard Item pairs (see fig.
5.12).

Figure 5.10.: The second Option: Selection of Dimension Characteristics.

32

5.2. Architecture

Figure 5.11.: The second Option: the affected Templates and Dimensions with
Characteristics.

Figure 5.12.: The second Option: the returned Information Need-Dashboard
Item pairs.

5.2. Architecture

Figure 5.13.: The Architecture of the Rule-Based Dashboard Initialization Tool.

In this section the architecture of the rule-based dashboard initialization sys-

33

5. Realization

tem is described. The architecture of the system is based on the multi-layered
software architecture approach, which offers reusability and flexibility of the
application. The goal of the multi-layered software structure is to divide the
software system into many different blocks, which can be added, modified and
extended independently of the other parts of the system. The approach also
allows easy error detection and error handling during the system development.

In figure 5.13 the general architecture of the dashboard initialization tool is
visualized. The architecture is divided into four layers, where each layer repre-
sents a particular level of abstraction. The three main layers (Client, Business
and Data Layers) are extended by the fourth layer, which is called Application
Layer.

Figure 5.14.: The UML Class Diagram of the Domain Model of the Rule-Based
Dashboard Initialization Tool.

As described in section 2.3, the Gargoyle code generator was used to generate
the basic functions of the application, which build the Business Layer logic of
the software system. This functions are create, retrieve, update, delete (CRUD)
and persistence methods of the application objects. In contrast to the Business
Layer, the Application Layer provides an additional application logic for a par-

34

5.2. Architecture

ticular software tool, which specifies the functionality of the application. The
Business Layer and the Application Layer are implemented by using the EJB
technology. The Client Layer is implemented by using JavaServer Faces and
realizes the GUI and the processing of the user input data. It then forwards the
data to the Application and Business Layers (see fig. 5.13 and section 2.3) .

As shown in figure 5.13, the Business Layer is divided into four sublayers: the
CRUD Facade, the CRUD Controller, the Domain Model and the DAO. The
CRUD Facade offers an interface for interactions between the Application Layer
and the Business layer and interactions between Managed Beans and the Busi-
ness Layer. The CRUD Facade of the dashboard template consists of an inter-
face class and a java class, which implements the interface. The CRUD Facade
gives the control to the CRUD Controller, which validates the data forwarded
from the CRUD Facade. If the data is not valid, the CRUD Controller throws
exceptions. Otherwise, the methods of the CRUD Controller invoke the cor-
responding methods of the Domain Model and the DAO classes. If an entity
shall be created, the CRUD Controller calls a method of the EntityFactoryLocal
class of the Domain Model, which creates the Java objects of the Domain Model.
This Java objects represent the POJOs, which are the Entity Beans described
in section 2.1. In order to store, delete or update the data in the database, the
DAO classes calls the Entity Manager.

Figure 5.14 illustrates the UML class diagram of the Domain Model. The Do-
main Model includes all components of the dashboard template, according to
the concept described in previous chapter. Each Dimension class includes one
or more Characteristics, which are represented by the Composition relation-
ships (see 5.14). A DashboardTemplate class contains a list of dimensions and a
list of characteristics. Additionally, each DashboardTemplate includes a list of
DashboardItemConfig-InformationNeedConfig pairs. Each pair is represented
by an object of the DashboardTemplateNeedsItem class. The DashboardTem-
plate and the DashboardTemplateNeedsItem are in a composition relation, such
that the DashbordTemplate is the container class of the DashboardTemplate-
NeedsItem.

Within this bachelor thesis, the Application Layer and the Client Layer were
extended. Figure 5.15 demonstrates the structural relations of the tool com-
ponents between the Client, Application and Business Layer at the example of
the Dimension component. As shown in figure 5.15, the JSF components of the
application have a hierarchical template structure, which is illustrated by the
dashed arrows. Templates offer a consistent organization of the pages struc-
ture and enable reusability of the JSF components. In the example of figure
5.15, the templates simpleDialog and simpleListTemplate of the package re-
source.comonHelpers are implemented for the creation of dialogs and tables
respectively. These templates are used by different components of the applica-
tion. The navigation between pages is demonstrated by the dashed arrows with
the label link.

35

5. Realization

Figure 5.15.: The Structural Relation of the Tool Components.

The DimensionList template includes the columns Dimension Name and Di-
mension ID. DimensionListWithViewLink implements the DimensionList tem-
plate and includes the two additional columns Edit and Delete for edit and
delete links. In order to realize a navigation link to the DimensionEdit page,
the DimensionListWithViewLink template implements the dimensionViewLink
template. As shown in figure 5.15, the DimensionListAll page implements
the DimensionListWithViewLink template and includes the table with the four

36

5.3. Implementation and Experiences

columns as described above.

For further input data processing and updating, the managed bean methods
of the DimensionBean are invoked, which is denoted by the arrows with the
label setProperty, action, actionListener (see fig. 5.15). The DimensionBean
class calls the methods of the Application Layer for the execution of the appli-
cation logic through the interface DashboardTemplateControllerExtensionLo-
cal. The Application Layer of the Rule-Based Dashboard Initialization Tool in-
cludes two components, the interface DashboardTemplateControllerExtension-
Local and the Java class DashboardTemplateControllerExtensionBean, which
implements the interface. The methods of the DashboardTemplateControllerEx-
tensionBean class forwards the method calls to the Business Layer.

5.3. Implementation and Experiences

This section describes important implementation aspects and experiences col-
lected during the implementation process. The main task of this bachelor thesis
was the implementation of the Application Layer and the extension of the Client
Layer. In the implementation of the concept described earlier, the PrimeFaces
framework was used. The PrimeFaces framework extends JSF by a large number
of the predefined GUI components. The further benefit of the PrimeFaces usage
within this bachelor work was to achieve a homogenous design of the application
pages.

Figure 5.16.: The Resources List.

Figure 5.15 of the previous section shows an example for the structure of the
JSF resource organization. The resources are divided into different packages ac-
cording to their functionality. In order to embed the necessary PrimeFaces links
and script tags, the resources components of the PrimeFaces have to be listed on
all pages, where the PrimeFaces are used. Figure 5.16 illustrates an example of
a page of the application with the PrimeFaces resources list implemented within
the head -tag of the page.

37

5. Realization

In order to display the available elements of the application, the list structure
was used (see fig. 5.2). Here, the application objects are listed according to their
IDs and Names. Additionally, each list includes the columns Edit and Delete,
where the links to edit and to delete the element in the corresponding row are
located. During the implementation of the component lists in the ListAll and
the Edit pages the following experiences and problems occurred.

Fetching of the Application Objects

Figure 5.17.: Fetching of a Dimension.

Figure 5.18.: The CharacteristicsList Template.

If the link Edit of the component table has been activated, the new page is
loaded, where the properties of the corresponding application object can be
added. In order to set the selected object and its properties on the edit page,
the JSF f:metadata-tag was used. In figure 5.17 the example source code for

38

5.3. Implementation and Experiences

fetching of a dimension object is shown.

Implementation of Templates

As mentioned in section 5.2, the template components are used in order to im-
plement the lists and the create dialogs. To implement the characteristic list
in the DimensionEditPage the CharacteristicsList template was used, but the
attributes action and actionListener of the Delete link were not invoked, while
the attributes characteristicValue and dimensionID were picked up correctly.
Figure 5.18 shows the CharacteristicsList template, which is implemented in
the DimensionEdit page (see fig. 5.19). Figure 5.19 demonstrates the imple-
mentation, which does not work, because, the dimension object is not set and
the methods of the corresponding managed bean, that are bound to the action
and actionListener attributes, are not invoked.

Figure 5.19.: Not working Implementation of the CharacteristicsList Template

Figure 5.20.: Correct Implementation of the CharacteristicsList Template.

Figure 5.20 illustrates the correct implementation of the CharacteristicsList tem-
plate, where the property dimension is set first and then the corresponding
characteristic list.

Handling of the valueChangeEvent

The application includes UI components like the selectOneMenu, the selectOn-
eRadio and the selectManyCheckbox, which include dynamic lists of items. This
components are used to realize combo boxes, radio buttons and check boxes
respectively. In order to register a new selected item in the managed bean,
the valueChangeListener attribute is set, where a method to handle the value
change event is defined. If a page includes a table with many different UI com-
ponents, that have a valueChangeListener(see fig. 5.5) bound to them, the value
change event is triggered for all components, regardless of a change of state of
the UI components. In order to update the values of the application object
properties properly, the following solution has been implemented. Each time an
event is fired and the value of the event parameter is not null, the old values of
all components are deleted and the new values are set.

39

5. Realization

Implementation of the selectOneRadio UI Component

Another problem that occurred during the implementation of the UI compo-
nents was, that the input and output data of the UI components are strings.
Thus, it was necessary to identify objects by an ID or another unique attribute.
For instance, the table of the DashboardTemplateEdit page includes dimensions
and the corresponding characteristics. According to the concept of the appli-
cation tool, the characteristics can be identified by the characteristic name and
the dimension id. This means, that two different dimensions could contain char-
acteristics with equal names. If the valueChangeListener of an UI component
returns only a characteristic name, it is impossible to identify its dimension ID.

Figure 5.21.: Implementation of the selectOneRadio UI Component.

Figure 5.21 illustrates the solution for the problem described above. In this
case, the attribute itemValue of the selectOneRadio component is composed of
the characteristic name and the corresponding dimension ID. Note, that the
value of the itemValue attribute should be equal to the return value of the
method bound to the attribute value of the selectOneRadio component. Thus,
the method getAssignedCharacteristicForSelectOne of the DashboardTemplate-
Bean class returns the assigned characteristic and the dimension ID as a string.

Setup Page

For the implementation of the setup page, a new managed bean, called Dash-
boardSetUpBean, was created. The setup page has no domain model and there-
fore cannot be persisted in the database. The selected dimensions and char-
acteristics as well as the affected templates are store in temporal lists of the
DashboardSetUpBean.

40

	Realization
	GUI and Concept
	Architecture
	Implementation and Experiences

