
2. Background

Contents

2.1. Existing System and Related Technology 5

2.2. Framework Popularity and First Frameworks Selection 11

2.3. General Web Framework Criteria and Frameworks Analysis . . . 12

2.4. Requirement Gathering . 16

2.5. System Requirement and Analysis 17

2.6. Summary . 21

MeDIC and XAM system are the example of the systems, which based on the
proposed architecture. These two systems are currently running, so the ex-
periment of this research work will not involves with these systems. Instead,
another system is introduced as, an existing system or a prototype. From this
point, the existing system refers to the Customer and Contract Management
System, a basic CRUD application, represents the relationship between Cus-
tomer and Contract object types. The existing system and related technology
are introduces in this chapter.

2.1. Existing System and Related Technology

The Customer and Contract Management System is a system represents the
relationship between customer to contracts (One-to-Many) and contract to cus-
tomer (One-to-One). For instance, the user can interacts with the customers
and contracts with basic CRUD operations (Create, Retrieve, Update, Delete).
User can navigates to a customer pro�le page and assigns multiple contracts to
that customer or other way around, navigates a contract information page and
selects a customer to bind to the contract [Figure 2.1].

The ModelRoot page is the main page of the system. It contains tables dis-
playing list of customers and contracts. User can view the detail or delete any
customer or contract object by navigates "delete" or "detail" link exists on each
row. Also, under each table, there is a link for customer or contract creation.

Either navigate through the "detail" link or �nishes the customer/contract cre-
ation successfully, user will be navigated to the customer/contract detail page.
In the detail page, user can change the object's data including manage the re-

5

2. Background

Figure 2.1.: Existing system's Use Case Diagram (part1)

Figure 2.2.: Existing system's Use Case Diagram (part2)

lationship between customer and contract (assign). The user will be redirected
back to the main page only when the "back" button clicked.

The architecture of the existing system shared similarities with the MeDIC sys-
tem, XAM system, and other general web applications based on J2EE. Follow
the J2EE approach, the system divides into 3 layers: Presentation layer, Busi-
ness Logic layer, and Data layer.

6

2.1. Existing System and Related Technology

Figure 2.3.: Page Flow Diagram

The presentation layer composed with plain JSPs and Servlets. The request
from the browser will be centralized to the Action Handler Servlet and delegates
to the corresponding Action class. The Action class communicates with the
Application Facade in the Business logic layer.

The Business Layer and Data layer are managed by EJB framework. The Ap-
plication Facade delegates the request sends by Actions in Presentation Layer
to the corresponding Controller. The controllers are the interfaces to simplify
the business logic in Management. The Entity persisted, and the results from
the database render in JSP page in the presentation layer. [Figure 2.3].

On the client layer, the existing system uses the Command pattern to encap-
sulate the request parameters. All requests pass through the Action Handler
then the Action Handler delegates the request to the corresponding Action class.

7

2. Background

Figure 2.4.: Architecture diagram of the existing system

Both Action Handler and Actions are all ordinary Servlets built for request del-
egation and communication to the business layer. One example of the problem
caused by this pattern is huge amount of Action classes since, for each user
operation, one action class needs to be created. In consequence, at least ten
action classes must be created per Entity (create, retrieve, update, delete, and
assign actions), this will increase dramatically, if there are more object types in
the system.

On the business layer, request and response are centralized through the only
portal of the backend, the Application Facade. The Application Facade is a
class, which provides a simpli�ed interface to more complex business logic inside
the Controller and Management modules.

2.1.1. Enterprise Java Beans (EJB)

In the proposed architecture, the whole backend is covered by Enterprise Java
Beans architecture (EJB) speci�cation, the server-side component architecture
for Java platform of the enterprise application. EJB is one of J2EE speci�cation,
which enable rapid and simpli�ed development of distributed, transactional,
secure and portable applications.

Based on the existing system, the client layer communicates through Application
Facade's Local or Remote interface. The corresponding Controller delegates
the data to the responsible Management, which contains persistence logic and
responsible in data layer communication. It does not matter how the system
is distributed or clustered, EJB handles all the complexity, such as internal
communication, transactional integrity, persistence, security, and deployment

8

2.1. Existing System and Related Technology

[Figure 2.4].

Figure 2.5.: Communication �ow of EJB application

2.1.2. IBM Websphere Application Server 7.0 (WAS)

IBM Websphere Application Server (WAS) is an application server under IBM's
Websphere brand [IBM11]. WAS is built using many open-standards such as
Java EE, XML, andWeb Services. WAS helps drive business agility by providing
millions of developers and IT architects with an innovative, performance-based
foundation to build, reuse, run, integrate and manage Service Oriented Archi-
tecture (SOA) application and services. WAS runs applications and services in
reliable, highly available, scalable environment to ensure business opportunities
are not lost due to application downtime.

WAS's history begins with version 6.1 and now into version 8, in this master
thesis report, version 7.0.0.9 considered as the existing system environment and
one of the main constraint for prototype development. In this version 7, WAS
simplifying the adoption of new standards such as Service Component Archi-
tecture (SCA).

The development tool, which design speci�cally for working with WAS is the
Rational Application Developer (RAD) [WCF+07], an IDE based on Eclipse
IDE. RAD is also the main development tool of this master thesis.

9

2. Background

2.1.3. Model-View- Controller pattern (MVC)

The MVC pattern or MVC architecture is one of the most commonly used web
architecture [HSD10]. The reason that MVC pattern mentioned in this research
paper is the existing system and most of the web frameworks are based on the
MVC pattern.

The MVC architecture isolates domain logic into three tiers: model, view, and
controller. Each tier responsible in di�erent domain as following:

• The model represents enterprise data and business rules to access and
update the data. Database system is also a part of the model.

• The view renders the content of the model. It is the view's responsibility to
maintain the consistency in its presentation when the model changes. Nor-
mally, the view never communicates with the model directly, but through
the controller. However, in some special cases, the view allows to commu-
nicate with the model directly, for example, in mobile application, where
the resources is limited.

• The controller translates the interaction with the view into actions to be
performed by the model. The actions performed by the model include
activating business processes or changing the state of model. Based on
the user interactions and outcome of the model actions, the controller
responds by selecting the appropriate view.

Based on [Figure 2.5], these following steps are the data �ow:

1. The user interacts with the user interface (ex. press the button).

2. The controller handles the request from user interface, then converts re-
quest into the appropriate action.

3. The controller noti�es the model of the user action and sends the change
in model state.

4. The model executes the transaction and return the result (date) back to
the controller.

5. The controller sets the data to render at the view and response back to
the user with the requested view.

Unlike Command and Facade pattern, MVC is a architecture pattern, while
Command and Facade are design pattern. However, by taking the advantage
of existing patterns, MVC can be implemented using Strategy, Composite, Ob-
server, and Command design pattern of Gang of Four [FRBS04].

The most remarkable bene�ts of the MVC architecture is the clear separation

10

2.2. Framework Popularity and First Frameworks Selection

Figure 2.6.: Communication �ow of MVC architecture

of each layer. In consequences, the developer can distributed development e�ort
to some extent, so the implementation changes in one part of the system do not
require changes to another. For instance, the system may have multiple views
sharing the same model, which is easier to maintain , test, and upgrade the
multiple system. To add new client, only adding view and controller is necessary.
Since the model is completely decoupled from views, it allows lot of �exibilities
to design and implement the model considering reusability and modularity. This
model also can be extended for further distribution application, which makes
the system extensible and scalable.

2.2. Framework Popularity and First Frameworks
Selection

Nowadays, many presentation development frameworks, such as Java Server
Faces (JSF), Wicket, and Tapestry, exist to cover the Presentation Layer. They
provide variety of features and architecture enhancements. First step, is to
narrow-down the scope of the focused framework based mainly, on framework
popularity. The popularity and number of user can determine quality, e�ective-
ness, and assured that the framework has enough quali�cation to pay attention
and considered as one of the research experiment.

Based on the statistic from Google Trends [Rai11b] and Zero Turnaround's Java

11

