
2.5. System Requirement and Analysis

The meeting started with short proposal presentation of this technical report.
After that, any attendances were free to gave their own opinions about the orig-
inal prototype, expected characteristics of the new architecture, and prioritize
all requirements.

The purpose of this requirements meeting is to get technical feedbacks and
suggestions from the users of the original prototype and use those informa-
tion as criteria for the 2nd frameworks selection and comparison. The selected
frameworks will be analyzed in detail, implemented as prototype of the existing
system, and evaluated in the following chapters.

2.5. System Requirement and Analysis

2.5.1. 1st priority (1)

• Avoid complex and hard to understand con�guration �les.

• Many small �les are more preferable than less amount of large �les.

• AJAX is optional but the system should be able to work without it.

• The framework's community should be active and the project must be
currently running.

Most of the attendances chose to avoid basic pitfalls which, increases the com-
plexity of the system as the �rst priority. One factor that a�ect the complexity
is large �les in the system especially, con�guration �les such as xml �les. There
are several ways to con�gure the framework but mainly, by xml �le or anno-
tation. Small amount, but large artifacts are harder to maintain than higher
amount, but small and simple artifacts since, there are very few tools/IDE,
which support xml auto-completion and veri�cation. Unlike xml, con�guration
by annotation eliminates additional artifacts and easier to understand. How-
ever, the advantage of xml is the ability to manages the properties/parameters
of deployed system without recompilation or redeployment. According to the
feedback from user, convention over con�guration framework is preferred, and
possibly, zero con�guration will be the best.

Asynchronous Javascript And XML (AJAX) is a web development method used
on the client-side to create interactive web application. With AJAX, web ap-
plication can send and retrieve the data from web server asynchronously (in
the background) without any sign of page refresh. For the existing system, any
frameworks have AJAX support are advantageous, but the system must still
working perfectly, even without AJAX. This requirement was the old require-
ment brought from the original prototype.

Community and support also important. The chosen framework's community

17



2. Background

should be active and provides support. For example,

• The o�cial website should provide good introduction to the framework
and resources for starters.

• The framework should release update version frequently and the project
must be currently running.

• The community such as web board, developer forum, or mailing list should
be active. The skillful members and framework development team should
enthusiastic to support and provide the answers the starter. The develop-
ers of the framework should also look after bug report.

The reason behind given the �rst priority on complexity of the system was all
attendances agreed that the new prototype should emphasize on convention over
con�guration, easy to maintain, and good supports from community.

2.5.2. 2nd priority (2)

• Component-based, inheritance supported architecture. All components
must be reusable and should have inheritance structure.

• Delegation and navigation support.

Reusability is always �rst factor to indicates the quality of the software devel-
opment and codes. For the backend and business logic, one way to obtains the
reusability is through inheritance structure. Most of the web application view
created by markup language such as HTML, XHTML, and JSP. All of those
markups does not support inheritance structure, or any mechanism that pro-
vides the user interface reusability. One way to accomplished the 2nd priority
requirement is component-based architecture framework.

In component-based aspect, each page considered as a component, and each page
can be constructed with multiple components, which means, each component
can be reused to construct pages, which shared some similarity as many time
as needed without code duplication.

For example [Figure2.9], a basic login component composed of text boxes to re-
ceive input data from user (i.e. username and password), and a form submission
button. Assume that there are two types of login page, which are login page
for normal user, and login page for system administrator. These two types of
login page have generalization relationship with basic login page, which means
they share similarities. If the framework supports inheritance structure for user
interface, these two pages can extend basic login page as a parent instead of
duplicate the whole codes from the basic login page. The o�cial name for the
markup inheritance is template inheritance.

18



2.5. System Requirement and Analysis

Figure 2.10.: Example of component-based, inheritance structure

Another way to ful�ll this requirement is the framework should provides Portlet
behavior User Interface or at least, provides Portlet API. Based on Portlet Spec-
i�cation [AH03], Portlets are web components-like Servlet, speci�cally designed
to be aggregated in the context of composite page. Combining with CMS likes
Portal, many Portlets are invoked in the single request of a Portal page. Each
Portlet procedures a fragment of markup of other Portlets, all within the Portal
page markup.

Inheritance supported architecture also provides several bene�ts for the system
such as:

• Provides high reusability. Less code duplication.

• Provides high understandability and maintainability.

• Provides simpler page construction.

Another sub-requirement for the 2nd priority requirement is the framework
should be able to manage the request delegation automatically. This request
delegation is responsible for moving a particular request through the right class.
With the delegation supports, the �ow of the entire system is under control. For
example, in the original prototype, the class ActionHandler.java is responsible
for the request delegation. It will redirect user to the responsible action class.
However, the example of the existing system is not the solution. The Action
Handler is a normal Servlet, which handles the �ow manually and roughly. The
framework, which support better �ow control is needed.

The main reason, why attendances gave the component-based architecture as the
second top priority was to avoid the boiler-plate code or repetitive code which
appeared in many places of the system. Component-based architecture also

19



2. Background

provides great reusability for the user interface components. Business Process
Management or Navigation Rules should be integrated to the existing system
to handle the request delegation.

2.5.3. 3rd priority (3)

• Good IDE support such as auto-completion, UI builder, multiple project
support, and etc.

Good IDE and tools support is another factor a�ects learning curve, produc-
tivity, errors, and maintainability of the project. Also, supported IDE and
tools make presentation layer development more convenient. These are several
examples of support features and their bene�ts:

• Auto-completion can be very productive and reduce human-errors.

• User interface builder provides easier way to create and manipulate user
interface components such as drag & drop, readymade user interface com-
ponent libraries, and more. These features lower the learning curve, and
also provides high productivity. Some IDE provides simpler interface for
con�guration �le modi�cation, which reduces di�culty in con�guration
�le handling.

• Code generator provides very productive way to generate invariant codes.
For example, generates events bind to user interface components, Beans,
CRUD application, or Test cases.

• Multiple project support.

2.5.4. 4th priority (4)

• Easy to test such as IDE support for test case generation, clear separation
between presentation and navigation logic, and etc.

Every software development project includes testing phase after the implementa-
tion phase. This became the reason why attendances prioritized the requirement
related to testing as fourth priority requirement.

The architecture of the prototype after integrates with the framework should
be easy to test. The code of the presentation layer should clearly separated
with the business logic or else, Unit testing and Integration testing will be di�-
cult to distinguished. For example, MVC architecture provides clear separation
between models, views, and controllers so the di�erent level of testing can be
distinguished easily.

20



2.6. Summary

The frameworks with IDE and tools supported for testing such as test case
generation, or provides powerful testing API are advantageous.

2.5.5. 5th priority (5)

• Model-based generation support

Since there is a project currently running about generation of web-based proto-
types for business applications, If the structure of the prototype after integrates
to framework has static pattern and possible to generate using code generator
theory, would be advantageous.

2.6. Summary

In previous sections of this technical report, seven famous frameworks are intro-
duced. The �gure below [Figure 2.10] shows the comparison of each framework
in context of the requirements.

Figure 2.11.: Frameworks comparison against requirements

For the common pitfalls (1st priority requirement), almost of the frameworks
passed, except Spring MVC and Stripes. Spring MVC has serious problem with
very high con�guration complexity (pure XML, con�guration over convention),
and Stripes has a small community and not actively developed.

For the component-based, inheritance structure architecture, and the request
delegation supported (2nd requirement), all of the frameworks have Portlet
API, so the Inheritance supported structure is possible. However, four frame-
works have component-based architecture, which are JSF, Seam, Wicket, and

21


