
3. Implementation

Contents

3.1. JBoss Seam . 27

3.2. Java Server Faces (JSF) . 29

3.3. Apache Wicket . 36

3.4. Apache Struts2 . 41

From the previous chapters, two rounds of framework selection process, and
analysis were done. The chosen frameworks for prototype implementation are
Seam, Wicket, JSF, Struts2. The prototype implementation is based on the
existing system (Customer and Contract Management System). All main func-
tionality such as create, retrieve, update, delete, and assign remains, but some
part of the �ow and user interface layout are redesigned. The purpose of the
prototype implementation is to understand the architecture, background pro-
cesses, artifacts produced under the same system, and proof of concept for each
frameworks selected from the previous step. The new system �ow of the pro-
totype [Figure 3.1] derived from the original �ow shown in [Figure 2.2]. After
did the system �ow analysis, some �ow were removed due to ambiguity and
complexity. The new system �ow aimed to make the system easier for user to
use, understandable, and more productive.

For example, according to the original system �ow, in order to assign customer
to contract, or other way around, there are two ways: navigates through detail
of the customer/contract, then navigates through assign contract/customer link,
or create customer/contract, then though the same process as the �rst way. In
the new system �ow, the customer/contract detail page and assign customer/-
contract are combined together, and the result from the assignment is refreshed
and shown automatically after the assignment selection and con�rmation.

The existing system divides into three sub-projects: muster, client, and ear
[Figure 3.2]. These three sub-projects responsible in three di�erent areas. The
muster project contains whole Business layer and everything necessary for Data
layer communication such as location of the database system, username/pass-
word of the database, query, entity beans (required when query using the Object
Relational Mapping (ORM)), and etc. In prototypes development, there is no
need to change any part of this project. Since, this master thesis's goal is to
investigate the presentation layer so, the backend is built once and used in every
prototypes. The client project re�ects the Presentation layer. This project is
the focused project in this master thesis. The architecture and the artifacts

25

3. Implementation

Figure 3.1.: New Page Flow Diagram

in this project are changed depend on the framework used in each prototype.
The ear project contains EAR �le, which need to be publish to the web server
in order to makes the prototype available. Normally, this project managed by
the IDE. Whenever the whole system compiled, the ear �le and the required
libraries are updates, then the ear �le need to be published to the web server.

In the client project [Figure 3.3], Like other ordinary web application, the views
(JSP) located in the WebContent folder and the web.xml, which is the default
con�guration �le for every web application project located in the WEB-INF
folder. The Servlets are in the src folder. The Action Handler translates the
request into action and delegates to the corresponding action class. The Action
classes share some similarity by inherit from the super class, Action. Those
action classes communicate with the Business layer by calling the methods in
the Application Facade, the only portal to the Business layer (muster project).
The detailed muster project structure explained in the appendix of this research
paper.

26

3.1. JBoss Seam

Figure 3.2.: Existing System Project Structure

In the following section of this chapter, failure of Seam prototype implementa-
tion is also introduced, then JSF, Wicket, and Struts2 implementation including
details information are described consecutively.

3.1. JBoss Seam

Seam is a powerful open-source full-stack framework for building web application
based on Java. Seam integrates other technologies and frameworks such as :

• Full JSF-based AJAX supported framework: RichFaces, IceFaces.

• Presentation Layer: JSF, Wicket, Google Web Toolkit (GWT).

• Business and Data Layer: Java Persistence API (JPA), EJB 3.0, Hiber-
nate.

• Business Process Management: Java Business Process Management (jBPM).

• Security Framework: Drools.

27

3. Implementation

Figure 3.3.: Client project structure

Since, Seam provides alternative several presentation layer development frame-
works fully integrated with EJB covered backend, which is the proposed architec-
ture from the beginning, and two of three presentation layer development frame-
works integration provides by Seam are the chosen frameworks (JSF, Wicket).
Altogether with many enhancements provided by Seam, instead of develop three
prototypes independently, at that point, integrated Seam to the whole proposed
architecture, then replaced only the presentation layer with the chosen frame-
works was the wiser decision [Figure 3.4]. The bene�ts of Seam integration
other than the enhancements mentioned in chapter two is the ease of prototype
development. Seam tied Wicket and JSF seamlessly to the backend and does
not required any Action beans. Also, it is simple to develop the next prototype
after the �rst one by changing only view technology without changing anything
at the backend.

Unfortunately, Seam prototype implementation was failed. The cause of failure
suspected to be the incompatibility of Seam and IBM Websphere 7.0 Applica-
tion Server (WAS). Even the JBoss community's resource already stated the
Seam installation on IBM Websphere 7.0 Application Server [KMR+11], but
in practical, it is not working in the existing environment. In consequences,
the prototype implementation plan changed back to the original plan, which is

28

3.2. Java Server Faces (JSF)

Figure 3.4.: Seam integrated architecture

develop the remaining prototype independently without Seam.

3.2. Java Server Faces (JSF)

Java Server Faces (JSF) is a Java-based web framework, which simplify the
development integration of web-based, server-side user interface. JSF is also a
request, component-driven MVC web framework developed under JavaEE and
JSR o�cial standard.

JSF's component architecture not just enables standard JSF UI widgets (but-
tons, hyperlinks, text�elds, checkboxes, and etc.), but also sets the stage for
third-party components libraries. JSF components are event-oriented, so JSF
allows client-generated event such as on click, on roll over, on release, on type,
and etc. If compares to other technology or framework currently out there, the
concept of JSF is similar to Microsoft Visual Studio .NET.

Even the o�cial latest stable release of JSF is version 2.0, but the risk from
failure of environments incompatibility which occurred in Seam prototype im-
plementation shouldn't be overlooked. Therefore, the prototype was developed
using JSF 1.2 implementation, which already contained in WAS and already
tuned the compatibility with WAS.

29

3. Implementation

Figure 3.5.: JSF Prerequisites

3.2.1. Working Environment and Tools

JTSL is one of the prerequisites because, JSTL used as a default JSF component
renderer until JSF 2.0 and newer version. Facelets is the default renderer for
JSF 2.0 and newer version, and required, in order to achieved the second priority
requirement for the lower version.

3.2.2. Architecture

JSF has a very complex architecture, which consists of several design patterns
working behind the scene [Jos05]. Developers only need to know �ve compo-
nents: FacesServlet, UI Components, JSP, Managed Beans, and Navigation
Rules. [Figure3.5]

Developers only need to know �ve components: FacesServlet, UI Components,
JSP, Managed Beans, and Navigation Rules.

The FacesServlet is the front controller of the system. All the requests from
the client have been translated into mapped action and delegated to the corre-
sponding page and the response from the system is sent back to the requested
client. Every JSF pages contain JSF components both basic components (JSTL
tags, Facelets), which represent only standard HTML, or third party libraries
(PrimeFaces, ADF Faces, Trinidad, IceFaces, RichFaces), which provide advance
widgets like trees, grids, tabs, or personal custom components. Each compo-
nent's value might bound to the value in Managed Bean, and some components
have event listeners, which call the methods in the Managed Bean, when trig-
gered. Those methods in the Managed Bean handle the communication with
the backend. The Navigation rules manage all page �ows of the system.

3.2.3. Basic Concepts and Life Cycle

Similar to all other web applications [Figure 3.6], JSF life cycle starts from client
sends request by navigates link, button, or enter a URL to Web Server. After
that, the server responses back as an webpage.

30

3.2. Java Server Faces (JSF)

Figure 3.6.: JSF integrated architecture

Figure 3.7.: Simple web application life cycle

To be more speci�ed, if takes a closer look, JSF life cycle divides into 6 phases:
restore view, apply request values, process validations, update model values,
invoke application, and render response [Figure 3.7].

Figure 3.8.: JSF life cycle

1. Restore View The request from client sends to FacesServlet in the Restore
View phase, which is the �rst phase. The main task in this phase is building

31

3. Implementation

the Component Tree. There are two possible cases. First, if the request is a
new request (done by URL submission), the Component Tree will be built and
stored in FacesContext because, there will be no further value submitted with
the request. In this case, the next phase will be Render Response. Second, if
the request is request by postback (done by form submission), the Component
Tree will be loaded from the FacesContext then go to the next phase, Apply
Request Values, with submitted value.

2. Apply Request Values In this phase, the component objects in Component
Tree will be iterated over and bind the request values to the responsible com-
ponents.

3. Process Validations Since submitted values from the web pages are Strings,
data validation is necessary. Attached validators perform correctness check on
the submitted values. If the validation failed, the next phase will be Render
Response and displays the previous page with error messages so the user can
correct the invalid input values. Otherwise, the next phase will be Update
Model Values. 4. Update Model Values The submitted values which pass the
validation will be set in Managed Beans through setter methods.

5. Invoke Application In this phase, all the action methods which bind to the
components (Command Buttons, Command Links) will be executed. These
action methods will pass request values to the Business Logic Layer and return
the result for the next phase.

6. Render Response After the get the result from the Business Logic Layer, the
action methods will return String value. These return values will be used in
page navigation de�ned in the Navigation Rules. Finally, the response page will
be encoded and send back to the user.

3.2.4. Project Structure and Artifacts Overview

There are totally, ten artifacts in JSF prototype [Figure 3.8]. The artifacts
divided into three types: Managed Beans, JSF pages, and con�guration �les.

There are three Managed Beans in the prototype. These Managed Beans respon-
sible in supporting the user interface components of the JSF pages by providing
attributes and methods, which bind to each component. For example, a textbox
component binds to an name attribute. After do the form submission, the value
user input in the textbox will be stored in name attribute in the Managed Bean
via setter method (setName). After that, if the user refreshes the page, the name
attribute that just stored in the Managed Bean will appear in the textbox. The
value in the textbox is set by getter method in Managed Bean (getName). Also,
the form submission component is bound to a method in Managed Bean.

There are two con�guration �les, one is the web.xml, the default con�guration

32

3.2. Java Server Faces (JSF)

Figure 3.9.: JSF project structure

�le, the other is faces-con�g.xml, the main con�guration of JSF. In JSF 1.2,
all Managed Beans are declared and mapped in the faces-con�g.xml. The com-
plexity of the faces-con�g.xml is very low. Only three simple to �ve lines of
code are needed in order to de�ne a Managed Bean and its session scope. In
JSF version 2.0, which aimed to be nearly zero-con�guration framework, only
one or two lines of annotation replaced, and these Managed Beans declaration
is not required anymore. The Navigation rules are declared in faces-con�g.xml
or its own �le, navigation-rule.xml. The Navigation rules are rules to control
the �ow of the user interface navigation likes from which page, if the output is
matched an string speci�ed in a rule, move to which page de�ned in that rule,
otherwise, move to an error page. These rules de�ned as an xml syntax with a
diagram-like user interface support from IDE [Figure 3.9].

3.2.5. Migration Steps

These following steps must be done in order to migrate the system from the
existing system to JSF prototype system. Only the presentation layer need to

33

3. Implementation

Figure 3.10.: JSF Navigation Rules (Eclipse IDE)

be changed. 1. Prepared the environment (JSF's prerequisites) 2. Copy all
required libraries (JSF's prerequisites) to the client project in the WEB-INF's
lib folder. 3. Add faces-con�g.xml to the WEB-INF folder. In some IDE such
as Eclipse, faces-con�g.xml is added automatically, when the JSF project is
created. 4. Create Managed beans and mapped them into faces-con�g.xml or
by annotation (JSF2.0 or newer). 5. Create views (JSF pages) composed of
user interface components, JSF core tags, and JSP/JSTL tags. 6. De�ned
Navigation rules in faces-con�g.xml or navigation-rule.xml using diagram view
supported by IDE. 7. Con�gure web.xml to make it realized Faces Servlet (Front
Controller) by adding these lines.

8. Publish EAR to the web server.

In order to ful�lls the 2nd priority requirement, additional view technology,
Facelets, is needed. Facelets is an o�cial view technology for JSF. Facelets sup-
ports all JSF UI components, template inheritance, and focuses completely on
building the JSF component tree, re�ecting the view for a JSF application. Al-
though, Facelets also aimed to improves JSF application in many aspect [Hig06],
one example of those aspect is the synchronization between JSP and JSF lifecy-
cle [Ber04]. Based on the example of [Figure 3.10], the top block of codes is the
parent template inherited by the second, and the second inherited by the third.
The result of this template inheritance is the great user interface reusability
provided by Facelets, which answers the second priority requirements.

There are many additional libraries for Testing JSF application such as JSFUnit,
InfoQ, and etc. All of them provides complete integration testing and unit test-
ing inside the container, which provides the developer full access to the Managed
beans. However, the independent unit testing on the view is not easy because

34

3.2. Java Server Faces (JSF)

Figure 3.11.: JSF's web.xml)

of JSF architecture does not provides complete separation of view and logic.
Also, there are plenty of good IDE supports for JSF such as auto-completion,
component tags validation, and simpli�ed interface for con�guration.

Since this prototype developed using JSF 1.2, migrates this prototype to the
newer version might be one of future plan. In JSF 2.0, there are many improve-
ments, which should be considered for future development such as:

• Allow for zero con�guration web applications. In JSF 2.0, con�guration
�les (web.xml, faces-con�g.xml) is not required anymore. Annotations
will be used for the necessary con�guration data. For instance, instead of
de�nes Managed Beans in faces-con�g.xml, only one line of annotation is
needed in Managed Bean class.

• Add one more phase in request processing lifecycle to speci�cally for
JavaScript and AJAX which means JavaScript library now becomes part
of the JSF speci�cation.

• Allow bookmarkable JSF pages and �x URL problems.

• Performance improvement.

• Support new standard for passing values from page to page.

35

3. Implementation

Figure 3.12.: JSF and Facelets inheritance example)

• Enable components to have a client-based lifecycle in addition to, or in-
stead of the server-based request/response lifecycle. This lifecycle would
enable user actions such as drag-and-drop, master-detail, and sub-dialogs
on a single page interface web application.

3.3. Apache Wicket

Similar to JSF, Wicket is a light-weight, component-based web application
framework. Wicket's goal is to makes web application development looks more
like desktop application development by eliminate the complexity of all server
side state. Wicket manages all server side state automatically which means
the developer will never directly dealing with requests/responses, URLs, or any
sessions.

With complete separation of view and logic, a POJO data model, and no XML
required (zero-con�guration), Wicket simpli�ed the web development [Nad08]
by swapping the boiler-plate, complex debugging and brittle code for powerful,
reusable components written in plain Java and HTML.

36

3.3. Apache Wicket

The latest statistic shows that Wicket is one of the most remarkable frame-
work. With increasing user every year, well-known as one of the most active
community, and frequently update released, makes Wicket becomes one of the
prototype in this master thesis.

3.3.1. Working Environments and Tools

Figure 3.13.: Wicket Prerequisites)

First, Maven 2 is needed because, the Wicket project structure is based on
Maven Archetype structure generation. Maven generates the project structure
and managed the dependency for Wicket. Second, Wicket-ioc library is not
required, but in order to use the dependency injection to communicates with
the Application Facade from the presentation layer, it is needed.

3.3.2. Architecture

Wicket's architecture is very simple. It is mainly composed of HTML tem-
plates bind tightly to POJOs with the same name [Figure 3.11]. These paired
HTML templates and POJOs represent web pages. Minimum number of ar-
tifact to build a page is two: one HTML page, and a POJO. In consequence,
huge amount of artifacts are produced. However, Wicket's component-based
architecture greatly reduces the complexity of artifacts. The developer may use
basic Wicket components or even, create custom components using the same
method as building a page. As a result, more than half of the artifact espe-
cially, HTML �les have few simple lines of components' interface declaration,
and POJOs are well-structured, highly reusable, and easy to understand with
inheritance structure.

The �ow is quite simple. The Request Cycle acts like a front controller, delegates
the request to the corresponding page, then the user interface components in
HTML template will be initialized by POJO bound to that HTML.

37

3. Implementation

Figure 3.14.: Wicket integrated architecture)

3.3.3. Basic Concepts and Life Cycle

Wicket's life cycle composed of three main steps: application loading, request
processing, and rendering [Figure 3.12]. Start with the Wicket �lter is initial-
ized and Request Cycle object, which handles the request delegation is created.
The request from user will be forced to passes the pre-request processing and
pre-render components before the component rendering. At the component
rendering state, if the component checking is set to enable in web.xml, the com-
ponent render status checking will be performed. During the rendering state, if
any model value is changed, the request will be forced to the pre-render state
again. Finally, the response will be passed through the post-render components
and post-request processing before sends back to the user.

Figure 3.15.: Wicket life cycle)

3.3.4. Project Structure and Artifacts Overview

There are totally, twenty-eight artifacts in Wicket prototype [Figure 3.13]. The
artifacts divided into four types: custom components, pages, data provider and

38

3.3. Apache Wicket

con�guration �les.

Figure 3.16.: Wicket project structure)

The Component package contains custom components of the prototype such
as data table displaying name of the customers and contract identi�er of the
contracts bind to each customer, or a column for any table which contains
hyperlinks to edit and view the detail of the object of that row. In order to
reuse the components on the pages in Client package, those components given
as the example need to be placed on a basic wicket component, Panel. As
described in the previous session, one page (component) consists of at least,
one HTML template and one POJO. Some component may has another private
small sub-component declared inside the POJO. In this case, another HTML
template under the name format: [POJO name]$[Sub-Component Name].html
is required.

The Client package contains the prototype pages. Those pages are simply the
combination the custom components declared in Component package and other
small details. Also, Wicket �lter class, CustomerContractManagement is needed
to be implemented and mapped in the con�guration �le. The �lter class respon-
sible in overall project control, for example, enable dependency injection for the
Application Facade and allow user to access the system with nicer URL.

There is only one con�guration �le, which is the default web application con-
�guration �le, web.xml. Only few lines to declared the Wicket �lter class and
mapped the Application Facade EJB reference is needed.

39

3. Implementation

3.3.5. Migration Steps

These following steps must be done in order to migrate the system from the
existing system to Wicket prototype system. Only the presentation layer need
to be changed. 1. Prepared the environment (Wicket's prerequisites). 2. Install
Maven 2. 3. Generate a Wicket project using Maven Archetype followed this
generation command :

mvn archetype:create -DarchetypeGroupId=org.apache.wicket -DarchetypeArtifactId=wicket-
archetype -quickstart -DarchetypeVersion=[wicket version number] -DgroupId=[group
id] -DartifactId=[project name] -DarchetypeRepository=https://repository.apache.org/
-DinteractiveMode=false

4. Import the project into the IDE and copy all required libraries (Wicket's
prerequisites) to the client project in the WEB-INF's lib folder.

5. Create HTML template and POJOs with the same name, or de�ned own
custom components.

6. Con�gure web.xml to make it realized Wicket �lter (Front Controller) by
adding these lines.

Figure 3.17.: Wicket's web.xml part1)

7. Map the Application Facade EJB reference by adding these following lines
to web.xml :

8. Publish EAR to the web server.

40

3.4. Apache Struts2

Figure 3.18.: Wicket's web.xml part2)

3.4. Apache Struts2

Apache Struts2 is a enhanced version of a combination of two frameworks:
Apache Struts, and OpenSymphony WebWork. Struts1, the original version
of Struts2, once a very �rst Java web framework, which revolutionized Java
web development and resulted as thousand of Struts-based application deployed
worldwide. Even though, Struts2's architecture and concept have improved a
lot from Struts1 [Str11], but the goal and purpose are still the same. Struts is an
request/response, action-based MVC framework, which makes web application
development easier, faster, and more productive.

Struts2 is totally, di�erent with Struts1, the core features are all implemented
with interceptors, value stack concept, OGNL expression, and Struts2 tags to
work around the application data, many annotation and conventions, which
makes Struts2 is more easy to use and understand.

3.4.1. Working Environments and Tools

Figure 3.19.: Struts2 Prerequisites)

The Struts2-core is the framework library. As the prerequisite for Struts2, the
framework itself is built on XWork2 framework and it used Object Graph Nota-
tional Language (OGNL) to access object properties. Easiest way to gain access
to the Application Facade in the business using dependency injection, an unof-
�cial library, struts2-ejb3-plugin is needed [ldt11]. A famous view technology,
Freemarker is used to create UI tag templates by default. There are several view

41

3. Implementation

option integration supported by Struts2 such as JSP/JSTL, Tiles, Velocity, Ex-
cel, XSL, PDF, and etcetera. Finally, the only additional library, displaytag 1.2
was brought into Struts2 prototype because, this widely-used library provides
datatable-like component, which is powerful, good-looking, and easy-to-manage
and manipulate the data and graphic user interface.

3.4.2. Architecture

In standard web application development, the client submits the request to web
server via web form (view), processes by Servlet, interacts with database, and
response back as an web form. This approaches are often considered inadequate
for large project because, it mixes business logic with presentation and makes
maintenance and testing di�cult.

The goal of Struts is to separate the model from view and controller [Figure
3.14]. Struts2 introduced Action bean as the controller to facilitate the writing of
templates for the view or presentation layer (typically in JSP, but XML/XSLT,
Tiles, FreeMarker and Velocity are also supported). The web application pro-
grammer is responsible for writing the model code, and for creating a central
con�guration �le struts-con�g.xml that binds together with model, view and
controller.

Requests from the client are sent to the controller in the form of "Actions"
de�ned in the con�guration �le; if the controller receives such a request it calls
the corresponding Action class that interacts with the application-speci�c model
code. The model code returns an "ActionForward", a string telling the controller
what output page to send to the client. Information is passed between model
and view in the form of special JavaBeans. A powerful custom tag library
allows it to read and write the content of these beans from the presentation
layer without the need for any embedded Java code.

Interceptor is the core concept of Struts2, which provides great code redundancy
reduction. Many Action beans share common concern. Several Action beans
need similar input validation. Some needs a �le upload to be pre-processed.
Another Action beans might need double form submission protection. Inter-
ceptors can execute code before and after the Action bean is invoked. Features
like double-submit guards, type conversion, object population, validation, �le
upload, page preparation, and more, are all implemented with the help of In-
terceptors. Each and every Interceptor is pluggable, so developers can decide
exactly which features an Action bean needs to support. Also, if a lot of Action
beans are plugged with the same pattern of interceptors, Interceptor stack can
be de�ned in the struts.xml to provide even more convenient. For example,
every Action beans which related to very important task need to apply double-
submit guards, user session validation, and encryption interceptor. Instead of
spending three lines to apply all required interceptor on every Action beans,
registering an interceptor stack contained three required interceptors, and spent

42

3.4. Apache Struts2

only a line for applying the stack to the Action beans is more productive.

Figure 3.20.: Struts2 integrated architecture)

3.4.3. Basic Concepts and Life Cycle

These following �ve steps describe the request processing lifecycle of Struts2
showed in Figure 3.15 : 1. The request is generated by user and sent to Servlet
container. 2. The Servlet container invokes Servlet Filter Dispatcher, which
get the name of the responsible action from the con�guration �le (struts.xml).
3. One by one Interceptors are applied before calling the action. Interceptors
performs tasks such as logging, validation, �le upload, double-submit guard,
and etc. 4. Action is executed and the Result is generated by Action. 5. The
output of Action is rendered in the view (JSP, Freemarker, Velocity, etc) and
the result is responded back to the user.

Figure 3.21.: Struts2 life cycle)

43

3. Implementation

3.4.4. Project Structure and Artifacts Overview

There are ten artifacts produced by Struts2 framework [Figure 3.16]. Those
artifacts categorized into three category: Action beans, views (JSPs), and con-
�guration �les.

Figure 3.22.: Struts2 project structure)

There are three Action Beans in the prototype. These Action Beans are similar
to Servlets. The di�erences are these Action beans also responsible in support-
ing the views of the JSP pages by providing attributes and methods, which bind
to struts tags and displaytag. For example, a datatable provides by displaytag
binds to customer name and contract identi�er attribute. After process the �rst
page request, the datatable shows all customer name and contract identi�er. Af-
ter do the create customer form submission, the value user input in the textbox
will be stored via setter method (setName). After that, if the user refreshes
the page contained datatable, the new customer value is also displayed in the
datatable. The value shows in the datatable is set by getter method in Action
Bean (getName). Also, the form submission tag is bound to a method in Action
Bean. Unlike JSF, every method that bound to the view must be registered in
struts.xml.

There are two con�guration �les, one is the web.xml, the default con�gura-
tion �le, the other is struts.xml, the main con�guration of Struts2. All Action
beans, methods inside Action beans which bound to the view, and page �ow
are all registered in struts.xml without any supports. For example, based on

44

3.4. Apache Struts2

struts.xml below, there is only one Action bean registered, which is Customer-
Action, if there is nothing wrong with the attributes initialization, the client will
be redirected to customerdetail.jsp. Create, Delete, and UpdateCustomer are
CustomerAction's methods registration. In consequences, these three methods
are allowed to be called on any view.

Figure 3.23.: Struts2 action mapping xml)

3.4.5. Migration Steps

1. Prepared the environment (Struts2's prerequisites)

2. Copy all required libraries (Struts2's prerequisites) to the client project in
the WEB-INF's lib folder.

3. Add struts.xml to the src folder. In some IDE such as Eclipse, struts.xml is
added automatically, when the Struts project is created.

4. Create Action beans and mapped them into struts.xml or by annotation.
In our prototype, Action beans were mapped in the struts con�guration �le
because, the Action mapping also include many other parameter such as method
name, result name, result type, and the result page, which totally, sums up to
3-4 lines of annotation scattered on top of the classes and methods declaration.
These annotations considered as one factor that increases artifact complexity.

5. Create views (JSP pages) composed of Struts core tags, 3rd party libraries

45

3. Implementation

(displaytag), other view technology(optional) and JSP/JSTL tags.

6. De�ned the page �ow in struts.xml.

7. Con�gure web.xml to make it realized Struts Filter Dispatcher (Front Con-
troller) by adding these lines:

Figure 3.24.: Struts2's web.xml part1)

8. Map the Application Facade EJB reference by adding these following lines
to web.xml :

Figure 3.25.: Struts2's web.xml part2)

9. Adding these lines to struts.xml is a requirement for WAS 7.0 integration:

Figure 3.26.: Struts2's web.xml part3)

10. Publish EAR to the web server.

46

	Implementation
	JBoss Seam
	Java Server Faces (JSF)
	Working Environment and Tools
	Architecture
	Basic Concepts and Life Cycle
	Project Structure and Artifacts Overview
	Migration Steps

	Apache Wicket
	Working Environments and Tools
	Architecture
	Basic Concepts and Life Cycle
	Project Structure and Artifacts Overview
	Migration Steps

	Apache Struts2
	Working Environments and Tools
	Architecture
	Basic Concepts and Life Cycle
	Project Structure and Artifacts Overview
	Migration Steps

