
4. Results and Evaluation

Contents

4.1. 1st Priority Requirement . . . . . . . . . . . . . . . . . . . . . 47

4.2. 2nd Priority Requirement . . . . . . . . . . . . . . . . . . . . . 48

4.3. 3rd Priority Requirement . . . . . . . . . . . . . . . . . . . . . 49

4.4. 4th Priority Requirement . . . . . . . . . . . . . . . . . . . . . 50

In previous chapters, three frameworks were chosen for the prototype implemen-
tation based on the framework capability against basic criteria and prioritized
requirements. However, the information alone is not enough, so the prototype
implementations were brought up for the proof of concept.

In this chapter, the results from prototype implementation are summarized
against the requirements and basic criteria. The major bene�ts and drawbacks
are also considered in framework analysis (i.e. Tapestry's backward compatibil-
ity problem eliminates Tapestry from being chosen). Finally, only one frame-
work out of three frameworks, which were implemented as prototypes, will be
state as the most suitable solution for this problem.

The analysis method is to compare each prototype including the existing system
against the requirements in the form of measure factors, the characteristics
and properties of the ideal solution. The �fth priority requirement will not
considered in this section but will be mentioned in the next chapter, summary.

4.1. 1st Priority Requirement

Measure factors: low con�guration complexity (convention over con�guration),
�ne-grained system, active community and project development, AJAX support
is a plus (must not force to use AJAX)

For the 1st requirement, Wicket prototype ful�lled this requirement completely.
These following properties make Wicket becomes the most suitable framework
for this requirement:

• There is no further con�guration required.

• Half of the artifacts are low complexity HTML templates and other arti-
facts is easy to understand.

47



4. Results and Evaluation

Figure 4.1.: 1st Priority Requirement Result

• It is one of the most active community and development team.

• It provides very good AJAX supported.

Other two frameworks and the existing system are working �ne on this require-
ment. JSF requires only few lines of simple con�guration for every Managed
Beans (no longer required in JSF 2.0) and only few lines of Action class register
for the existing system, while Struts2 required quite more e�ort on Action Beans
mapping and Interceptors management. Moreover, even Struts2 has quite poor
documentation and not friendly to search engine, but all frameworks have good
supports from their community and provide AJAX supported without forcing
developers to use AJAX. All of them ful�lled the 1st requirement lead byWicket.

4.2. 2nd Priority Requirement

Measure factor: component-based architecture with inheritance-supported ar-
chitecture or any solution that provides user interface component reusability
provides user interface �ow management supported or provides integration with
other �ow management technology.

For this requirement, by integrates with Facelets, JSF is the most suitable frame-
work, which ful�lls this requirement. JSF is a component-based framework,
which might not originally provides template inheritance structure, but the o�-
cial template technology build speci�cally for JSF, Facelets provides great user
interface reusability with template inheritance. Facelets makes JSF comparable
to Wicket, which is the natural-born component-based framework with compo-
nent inheritance structure, while Struts2 is not a component-based framework
and does not provides user interface inheritance structure or any strategy for
user interface reusability at all. However, Wicket does not provide any �ow

48



4.3. 3rd Priority Requirement

Figure 4.2.: 2nd Priority Requirement Result

management technology or even other �ow management technology integration,
while both Struts2 and JSF supports user interface �ow management. JSF's
user interface �ow management, Navigation Rule is perfectly suits this require-
ment because of build-in Navigation Rule's diagram-like graphic user interface
greatly simplify ease of use and con�guration complexity, while Struts2 needs
more e�ort on XML-based �ow control.

The existing system fails both sub-requirements. There is no strategy for user
interface reusability and an Action Handler class does the �ow management
manually.

4.3. 3rd Priority Requirement

Measure factors: good tools and IDE supports.

Figure 4.3.: 3rd Priority Requirement Result

49



4. Results and Evaluation

JSF and Struts2 have very good tools and IDE supports, which provides auto-
completion, beans manipulation, and graphical con�guration supported. If
based on famous Java IDE, Eclipse and its plug-ins, JSF supports are already
included in every standard version of Eclipse. Whereas, Strus2 needs addi-
tional plug-in, MVCWeb Project to handles the con�guration �le with node-like
graphic user interface.

Wicket has no o�cial IDE or tools supported, but because of Wicket's simple
architecture, o�cial tools and IDE are not necessary. Unlike JSF and Struts2,
which plenty of custom tags, either user custom or 3rd party tags and their
parameters are used in the view; only simple template Wicket tags are declared
in HTML template backed with POJOs. Wicket and existing system does not
need any additional tools and IDE supports which makes all frameworks ful�ll
this requirement equally.

4.4. 4th Priority Requirement

Measure factors: easy to do the testing.

Figure 4.4.: 4th Priority Requirement Result

For this requirement, Wicket and its speci�c unit testing API is the most suitable
solution. Wicket Tester is a unit testing API for Wicket applications without the
need for the Servlet container, which is included in Wicket core library. Struts2
also provides many alternatives for unit testing outside the container such as
EasyMock, jMock, and TestStruts2. JSF has problem in separation of view
and business logic and the existing system does not do well in this requirement
because of separation of view and business logic also.

There are also other factors that a�ect the decision-making such as JSF's perfor-
mance issue, Struts2's Interceptor, Wicket's extra active community and light-
weightiness. Even these factors might not related to the requirement directly,
but these bene�ts and drawbacks e�ect the quality of the framework and should
be considered.

From the current result, the most suitable framework to replace the proposed

50



4.4. 4th Priority Requirement

architecture is Apache Wicket. Struts2 is eliminated from the list because, it
does not completely ful�ll the �rst priority requirement (con�guration complex-
ity, community and supports) and does not fail the main second requirement
(component-based, inheritance structure supported framework). Even Struts2 is
widely used and Interceptors provides great reusability, but compared to Wicket
and JSF, Struts2 does not answer our question.

The e�ciency of Wicket and JSF are proximate. Both of them ful�ll most of
the requirements. Wicket completely ful�ll �rst and fourth priority requirements
with zero con�guration, very vibrant community, and powerful unit testing API,
while JSF also ful�ll �rst requirement with some artifact complexity and few
simple con�gurations. However, JSF has some problem on testing each layer
separately. Facelets and navigation rule ful�lled the second priority require-
ment of JSF with template inheritance and user interface �ow management
while Wicket was completely ful�lling the component-based inheritance struc-
ture without any extra technology, but Wicket does not provide user interface
�ow management at all. The third requirement JSF and Wicket are proximal.
JSF has very good tools and IDE supported, while Wicket does not need any
additional tools or IDE.

Since the result from comparing the requirements alone cannot indicates which
one is the most suitable framework to replace the proposed architecture, other
important factor which needs to be considered. The reason why Wicket was cho-
sen is JSF has a very serious issue on very high memory consumption rate, while
one of the Wicket's prominent points is its light-weightiness. Many source did
the comparison between JSF and Wicket memory usage, and some source even
proves that even JSF enhanced with Seam's JSF memory consumption opti-
mization consumes more memory than stand alone Wicket [Tho11]. Combining
with very low learning curve and simple architecture with complete separation
of presentation layer and business logic layer, Wicket is the best choice amongst
all frameworks to replace the proposed architecture.

51



4. Results and Evaluation

52


	Results and Evaluation
	1st Priority Requirement
	2nd Priority Requirement
	3rd Priority Requirement
	4th Priority Requirement


